Determination of Electron Flows

Making use of Equations (2.169), (2.177), (2.196), and (2.203), we obtain

$\displaystyle f_t\,[\mu_e]\,(u_{\theta\,e}) = -[F_{ee}]\,(u_{\parallel\,e}) +[F...
...\,(u_{\parallel\,i}) +\langle{\mit\Omega}_e\rangle\,\tau_{ee}\,(E_{\parallel}).$ (2.233)

It follows from Equations (2.183) and (2.233) that

$\displaystyle ([F_{ee}]+f_t\,[\mu_e])\,(u_{\theta\,e})$ $\displaystyle = (-[F_{ee}]+[F_{ei}])\,(V_E) - [F_{ee}]\,(V_{\ast\,e}) + [F_{ei}]\,\{(u_{\theta\,i})+(V_{\ast\,i})\}$    
  $\displaystyle \phantom{=}
+ \langle{\mit\Omega}_{e}\rangle\,\tau_{ee}\,(E_\parallel).$ (2.234)

However, $(-[F_{ee}]+[F_{ei}])\,(V_E)=(0)$ because $F_{ee\,j1}=F_{ei\,j1}$, for $j=1,2$, and $V_{E\,2}=0$. Hence, we get

$\displaystyle ([F_{ee}]+f_t\,[\mu_e])\,(u_{\theta\,e})$ $\displaystyle =- [F_{ee}]\,(V_{\ast\,e}) + [F_{ei}]\,([1]-[L_{ii}])\,(V_{\ast\,i})
+ \langle{\mit\Omega}_{e}\rangle\,\tau_{ee}\,(E_\parallel),$ (2.235)

where use has been made of Equation (2.214). It follows that

$\displaystyle (u_{\theta\,e}) = -[L_{ee}]\,(V_{\ast\,e}) +[L_{ei}]\,(V_{\ast\,i}) + \langle{\mit\Omega}_e\rangle\,\tau_{ee}\,[Q_{ee}]\,(E_{\parallel}),$ (2.236)

where

$\displaystyle [L_{ee}]$ $\displaystyle = ([F_{ee}] + f_t\,[\mu_e])^{-1}\,[F_{ee}],$ (2.237)
$\displaystyle [L_{ei}]$ $\displaystyle = ([F_{ee} ]+ f_t\,[\mu_e])^{-1}\,[F_{ei}]\,([1] - [L_{ii}]),$ (2.238)
$\displaystyle [Q_{ee}]$ $\displaystyle = ([F_{ee}] + f_t\,[\mu_e])^{-1}.$ (2.239)

Making use of Equations (2.197), (2.198), and (2.216), and only retaining terms up to first order in the small parameter $f_t$, we get

$\displaystyle [L_{ee}]$ \begin{align*}= \left[
\begin{array}{cc}
1- \beta_{11}\,f_t, & -\beta_{12}\,f_t\\ [0.5ex]
-\beta_{21}\,f_t,& 1-\beta_{22}\,f_t
\end{array}\right],\end{align*} (2.240)
$\displaystyle [L_{ei}]$ \begin{align*}= \left[
\begin{array}{cc}
1- \beta_{11}\,f_t, & \alpha_1\,(1-[\al...
...x]
-\beta_{21}\,f_t,& -\alpha_1\,\beta_{21}\,f_t
\end{array}\right],\end{align*} (2.241)
$\displaystyle [Q_{ee}]$ \begin{align*}= \left[
\begin{array}{cc}
\gamma_{11}-\delta_{11}\,f_t, & \gamma_...
...}-\delta_{21}\,f_t,&\gamma_{22}-\delta_{22}\,f_t
\end{array}\right],\end{align*} (2.242)

where

$\displaystyle \beta_{11}$ $\displaystyle = \frac{(\!\sqrt{2}+13/4)\,\mu_{e\,11} - (3/2)\,\mu_{e\,12}}{\sqrt{2}+1}=1.64,$ (2.243)
$\displaystyle \beta_{12}$ $\displaystyle = \frac{(\!\sqrt{2}+13/4)\,\mu_{e\,12} - (3/2)\,\mu_{e\,22}}{\sqrt{2}+1}=1.23,$ (2.244)
$\displaystyle \beta_{21}$ $\displaystyle = \frac{-(3/2)\,\mu_{e\,11} + \mu_{e\,12}}{\sqrt{2}+1}=-0.0722,$ (2.245)
$\displaystyle \beta_{22}$ $\displaystyle = \frac{-(3/2)\,\mu_{e\,12} + \mu_{e\,22}}{\sqrt{2}+1}=0.600,$ (2.246)
$\displaystyle \gamma_{11}$ $\displaystyle = \frac{\sqrt{2}+13/4}{\sqrt{2}+1}=1.93,$ (2.247)
$\displaystyle \gamma_{12}$ $\displaystyle = - \frac{3/2}{\sqrt{2}+1}=-0.621,$ (2.248)
$\displaystyle \gamma_{21}$ $\displaystyle = - \frac{3/2}{\sqrt{2}+1}=-0.621,$ (2.249)
$\displaystyle \gamma_{22}$ $\displaystyle = \frac{1}{\sqrt{2}+1}=0.414,$ (2.250)
$\displaystyle \delta_{11}$ $\displaystyle = \beta_{11}\,\gamma_{11} + \beta_{12}\,\gamma_{21}=2.41,$ (2.251)
$\displaystyle \delta_{12}$ $\displaystyle = \beta_{11}\,\gamma_{12} + \beta_{12}\,\gamma_{22}=-0.512,$ (2.252)
$\displaystyle \delta_{21}$ $\displaystyle = \beta_{21}\,\gamma_{11} + \beta_{22}\,\gamma_{21}=-0.512,$ (2.253)
$\displaystyle \delta_{22}$ $\displaystyle = \beta_{21}\,\gamma_{12} + \beta_{22}\,\gamma_{22}=0.293.$ (2.254)

Here use has been made of Equations (2.209)–(2.211), (2.217), and (2.218).

It follows from Equations (2.165), (2.166), (2.170), (2.181)–(2.185), (2.236), and (2.240)–(2.242) that

$\displaystyle \frac{{\bf V}_e\cdot\nabla\theta}{{\bf B}\cdot\nabla\theta}$ $\displaystyle =-(1-\beta_{11}\,f_t)\,\frac{V_{\ast\,e\,1}}{\langle B^2\rangle}
...
...,V_{\ast\,e\,2} +(1-\beta_{11}\,f_t)\,\frac{V_{\ast\,i\,1}}{\langle B^2\rangle}$    
  $\displaystyle \phantom{=} +\alpha_1\, [1-(\alpha_2+\beta_{11})\,f_t]\,\frac{V_{...
...elta_{11}\,f_t)\,\frac{\langle {\bf E}\cdot{\bf B}\rangle}{\langle B^2\rangle},$ (2.255)
$\displaystyle \frac{{\bf q}_e\cdot\nabla\theta}{p_e\,{\bf B}\cdot\nabla\theta}$ $\displaystyle = -\frac{5}{2}\,\beta_{21}\,f_t\,V_{\ast\,e\,1}+\frac{5}{2}\,(1-\...
...rac{5}{2}\,\alpha_1\,\beta_{21}\,f_t\,\frac{V_{\ast\,i\,2}}{\langle B^2\rangle}$    
  $\displaystyle \phantom{=} +\frac{5}{2}\,\frac{e\,\tau_{e}}{m_e}\,(\gamma_{21}-\delta_{21}\,f_t)\,\frac{\langle {\bf E}\cdot{\bf B}\rangle}{\langle B^2\rangle},$ (2.256)

and

$\displaystyle \langle{\bf V}_e\cdot{\bf B}\rangle$ $\displaystyle =V_{E\,1} +\beta_{11}\,f_t\,V_{\ast\,e\,1}
+\beta_{12}\,f_t\,V_{\ast\,e\,2} +(1-\beta_{11}\,f_t)\,V_{\ast\,i\,1}$    
  $\displaystyle \phantom{=} + \alpha_1\,[1-(\alpha_2+\beta_{11})\,f_t]\,V_{\ast\,...
..._{e}}{m_e}\,(\gamma_{11}-\delta_{11}\,f_t)\,\langle {\bf E}\cdot{\bf B}\rangle,$ (2.257)
$\displaystyle \frac{\langle {\bf q}_e\cdot{\bf B}\rangle}{p_e}$ $\displaystyle =
-\frac{5}{2}\,\beta_{21}\,f_t\,V_{\ast\,e\,1} -\frac{5}{2}\,\be...
...21}\,f_t\,V_{\ast\,i\,1}+\frac{5}{2}\,\alpha_1\,\beta_{21}\,f_t\,V_{\ast\,i\,2}$    
  $\displaystyle \phantom{=} +\frac{5}{2}\,\frac{e\,\tau_{e}}{m_e}\,(\gamma_{21}-\delta_{21}\,f_t)\,\langle {\bf E}\cdot{\bf B}\rangle.$ (2.258)

Here, we have made use of the fact that $\tau_{ee}=\tau_e$.

In the circular magnetic flux-surface limit, Equations (2.255) and (2.256) reduce to

$\displaystyle V_{\theta\,e}$ $\displaystyle \simeq-(1-\beta_{11}\,f_t)\,\frac{1}{e\,n_e\,B}\,\frac{dp_e}{dr}
...
...\,B}\,\frac{dT_e}{dr}-(1-\beta_{11}\,f_t)\,\frac{1}{e\,n_e\,B}\,\frac{dp_i}{dr}$    
  $\displaystyle \phantom{=} +\alpha_1\, [1-(\alpha_2+\beta_{11})\,f_t]\,\frac{1}{...
...u_{e}}{m_e}\,\frac{B_\theta}{B}\,(\gamma_{11}-\delta_{11}\,f_t)\,E_{\parallel},$ (2.259)
$\displaystyle \frac{q_{\theta\,e}}{p_e}$ $\displaystyle \simeq -\frac{5}{2}\,\beta_{21}\,f_t\,\frac{1}{e\,n_e\,B}\,\frac{...
...c{dT_e}{dr}
-\frac{5}{2}\,\beta_{21}\,f_t\,\frac{1}{e\,n_e\,B}\,\frac{dp_i}{dr}$    
  $\displaystyle \phantom{=} +\frac{5}{2}\,\alpha_1\,\beta_{21}\,f_t\,\frac{1}{e\,...
...tau_{e}}{m_e}\,\frac{B_\theta}{B}\,(\gamma_{21}-\delta_{21}\,f_t)\,E_\parallel,$ (2.260)

whereas Equations (2.257)–(2.258) yield

$\displaystyle V_{\parallel\,e}$ $\displaystyle \simeq-\frac{1}{B_\theta}\,\frac{d{\mit\Phi}}{dr}+\beta_{11}\,f_t...
...frac{dT_e}{dr}-(1-\beta_{11}\,f_t)\,\frac{1}{e\,n_e\,B_\theta}\,\frac{dp_i}{dr}$    
  $\displaystyle \phantom{=} +\alpha_1\, [1-(\alpha_2+\beta_{11})\,f_t]\,\frac{1}{...
..._i}{dr}-\frac{e\,\tau_{e}}{m_e}\,(\gamma_{11}-\delta_{11}\,f_t)\,E_{\parallel},$ (2.261)
$\displaystyle \frac{q_{\parallel\,e} }{p_e}$ $\displaystyle \simeq -\frac{5}{2}\,\beta_{21}\,f_t\,\frac{1}{e\,n_e\,B_\theta}\...
...{dr}
-\frac{5}{2}\,\beta_{21}\,f_t\,\frac{1}{e\,n_e\,B_\theta}\,\frac{dp_i}{dr}$    
  $\displaystyle \phantom{=} +\frac{5}{2}\,\alpha_1\,\beta_{21}\,f_t\,\frac{1}{e\,...
...ac{5}{2}\,\frac{e\,\tau_{e}}{m_e}\,(\gamma_{21}-\delta_{21}\,f_t)\,E_\parallel.$ (2.262)

Expressions (2.259)–(2.262) have many features in common with the corresponding expressions, (2.226)–(2.229), for the ions, despite being much more complicated in nature. In particular, the E-cross-B velocity makes no contribution to the poloidal component of the electron fluid velocity. Moreover, the poloidal component of the electron fluid velocity is similar in magnitude to a diamagnetic velocity, whereas the parallel component is larger by a factor $q/\epsilon$.