Electromagnetic Torques

The flux-surface integrated poloidal and toroidal electromagnetic torque densities acting on the plasma can be written

$\displaystyle T_\theta(r,t)$ $\displaystyle = \oint\oint \,(\delta {\bf j}\times \delta{\bf B})_\theta\,{\cal J}\,d\theta\,d\varphi,$ (14.61)
$\displaystyle T_\varphi(r,t)$ $\displaystyle = \oint\oint \,(\delta {\bf j}\times \delta{\bf B})_\varphi\,{\cal J}\,d\theta\,d\varphi,$ (14.62)

respectively. Equations (14.3), (14.8), (14.9), (14.44), and (14.58)–(14.60) yield

$\displaystyle T_\theta$ $\displaystyle = - \frac{2\pi^2\,R_0}{\mu_0}\sum_{k=1,K}{\rm Im}\left([\chi_k]_{r_{k-}}^{r_{k+}}\,\psi_k^{\,\ast}\right)\,\delta(r-r_k),$ (14.63)
$\displaystyle T_\varphi$ $\displaystyle = \frac{2\pi^2\,R_0}{\mu_0}\sum_{k=1,K}{\rm Im}\left(\frac{n}{m_k}\,[\chi_k]_{r_{k-}}^{r_{k+}}\,\psi_k^{\,\ast}\right)\,\delta(r-r_k).$ (14.64)

Let

$\displaystyle {\mit\Psi}_k(t)$ $\displaystyle =\frac{\psi_k(r_k,t)}{m_k},$ (14.65)
$\displaystyle {\mit\Delta\Psi}_k(t)$ $\displaystyle = [\chi_k]_{r_{k-}}^{r_{k+}}.$ (14.66)

Note that these quantities are, in general, complex. It follows that [11,14,16]

$\displaystyle T_\theta(r,t)$ $\displaystyle = \sum_{k=1,K} T_{\theta\, k}(t)\,\delta(r-r_k),$ (14.67)
$\displaystyle T_\varphi(r,t)$ $\displaystyle =\sum_{k=1,K} T_{\varphi \,k}(t)\,\delta(r-r_k),$ (14.68)

where

$\displaystyle T_{\theta \,k}$ $\displaystyle = - \frac{2\pi^2\,R_0\,m_k}{\mu_0}\,{\rm Im}({\mit\Delta\Psi}_k\,{\mit\Psi}_k^{\,\ast}),$ (14.69)
$\displaystyle T_{\varphi\,k}$ $\displaystyle = \frac{2\pi^2\,R_0\,n}{\mu_0}\,{\rm Im}({\mit\Delta\Psi}_k\,{\mit\Psi}_k^{\,\ast}).$ (14.70)

It can be seen, by analogy with the analysis of Sections 3.3, 3.8, and 3.13, that ${\mit\Psi}_k$ is the reconnected magnetic flux at the $k$th rational surface, whereas ${\mit\Delta\Psi}_k$ parameterizes the amplitude and phase of the current sheet flowing (parallel to the equilibrium magnetic field) at the same surface.