... is[*]
In principle, $ A=A(\omega)$ and $ B=B(\omega)$ , with $ A+B=1$ . However, we shall demonstrate, later on, that $ B=0$ , otherwise causality is violated. It follows that $ A=1$ . Thus, it is legitimate to assume, for the moment, that $ A$ and $ B$ are independent of $ \omega$ .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... kind.[*]
J.D. Jackson, Classical Electrodynamics, 2nd Edition, (Wiley, 1962), p. 104.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... that[*]
A. Sommerfeld, Partial Differential Equations in Physics, (Academic Press, New York, 1964), p. 117.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... form [*]
J.D. Jackson, Classical Electrodynamics, 2nd Edition, (Wiley, 1962). Section 3.5.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... that [*]
Ibid. Section 3.2.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... form [*]
Ibid. Section 3.5.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... that [*]
Ibid. Section 3.6.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... is [*]
M. Abramowitz, and I. Stegun (eds.), Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, (Dover, New York, 1965). Chapter 9.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... books.[*]
Ibid.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... is [*]
Ibid.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... where [*]
Ibid.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... identity [*]
Ibid.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... integrals,[*]
J.D. Jackson, Classical Electrodynamics, 2nd Edition, (Wiley, 1962). Section 5.5.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... even.[*]
Ibid.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... that [*]
Ibid.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... known,[*]
M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions, (Dover, New York, 1965). Equation 9.1.21.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... integrals,[*]
M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions, (Dover, New York, 1965). Section 7.3.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... decent.[*]
Léon Brillouin, Wave Propagation and Group Velocity, (Academic Press, New York, 1960).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... decent [*]
Ibid.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... 1857.[*]
G.G. Stokes, Trans. Camb. Phil. Soc. 10, 106-128 (1857).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... convention.[*]
Here, we are assuming that the laws of physics do not possess an intrinsic handedness. This is certainly the case for mechanics and electromagnetism. However, the weak interaction does possess an intrinsic handedness: that is, it is fundamentally different in a parity inverted universe. So, the equations governing the weak interaction do actually contain mixtures of tensors and pseudo-tensors.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.