Next: Laplace's Equation in Spherical
Up: Potential Theory
Previous: Associated Legendre Functions
Spherical Harmonics
The spherical harmonics,
, are the angular portions of the global
solutions to Laplace's equation in standard spherical coordinates,
,
,
. Here,
is a non-negative
integer (known as the degree), and
is an integer (known as the order) lying in the range
. The spherical
harmonics are well behaved and single valued functions that satisfy the
differential equation
|
(307) |
and take the form
|
(308) |
It follows from Equation (295) that
|
(309) |
The
satisfy the orthonormality constraint
|
(310) |
where
is a an element of solid angle, and the integral is taken
over all solid angle.
Note that the spherical harmonics form a complete set of angular functions.
All of the spherical harmonics of degree less than 3 are listed below:
Consider two spherical coordinate systems,
,
,
and
,
,
, whose origins coincide, but
whose polar axes subtend an angle
with respect to one another. It follows that
|
(320) |
Moreover, the so-called addition theorem for spherical harmonics states that
|
(321) |
Next: Laplace's Equation in Spherical
Up: Potential Theory
Previous: Associated Legendre Functions
Richard Fitzpatrick
2014-06-27