Self Inductance
Consider a long, uniformly wound, cylindrical solenoid of length , and radius ,
that has turns per unit length,
and carries a current . The longitudinal (i.e., directed along the
axis of the solenoid) magnetic field within the solenoid is approximately uniform,
and is given by
|
(2.322) |
(See Section 2.2.11.) The magnetic flux passing though each turn of the solenoid wire is
. Thus, the total flux passing through
the solenoid wire, which has turns, is
|
(2.323) |
Hence, the self inductance of the solenoid is
|
(2.324) |
Note that the self inductance only depends on geometric quantities, such as the number
of turns per unit length of the solenoid, and the cross-sectional area of the turns.
Suppose that the current flowing through the solenoid changes.
A change in the current implies a change in the magnetic flux linking the solenoid
wire, because
. According to Faraday's
law, this change
generates an emf in the wire. By Lenz's law, the emf is such
as to oppose the change in the current; that is, it is a back-emf. Thus, we can write
|
(2.325) |
where is the generated back-emf. [See Equation (2.284).]
Figure 2.27:
The equivalent circuit of a solenoid connected to a battery.
|
Suppose that our solenoid has an electrical resistance . Let us
connect the ends of the solenoid across the terminals of a battery of
constant voltage . The equivalent circuit is shown in Figure 2.27.
The inductance and resistance of the solenoid are represented by a perfect
inductor, , and a perfect resistor, , connected in series. The voltage drop
across the inductor and resistor is equal to the voltage of the battery,
. The voltage drop across the resistor is simply (see Section 2.1.11), whereas the
voltage drop across the inductor (i.e., minus the back-emf) is
. Here, is the current flowing through the solenoid.
It follows that
|
(2.326) |
This is a differential equation for the current . We can rearrange it to
give
|
(2.327) |
The general solution is
|
(2.328) |
The constant is fixed by the initial conditions. Suppose that the
battery is connected at time , when . It follows that , so
that
|
(2.329) |
This curve is shown in Figure 2.28.
It can be seen that, after the battery is connected, the current
ramps up, and attains its steady-state value (which comes from Ohm's
law), on the characteristic timescale
|
(2.330) |
To be more exact, the current has risen to approximately 63% of its final value at time , and to more than 99%
of its final value at time .
The timescale is sometimes called the time constant of the circuit, or
(somewhat unimaginatively) the L over R time of the circuit. We conclude that it takes a finite time to
establish a steady current flowing through a solenoid.
Figure: 2.28
Typical current rise profile in a circuit of the type shown in Figure 2.27. Here, and .
|