Linear Resonant Response Regimes


Table 5.2: The various linear resonant response regimes. See Equations (4.65), (5.61), (5.69), (5.66), and (5.110)–(5.113). The response regimes are the resistive-inertial (RI), the viscous-resistive (VR), the semi-collisional (SC), the diffusive-resistive (DR), the inertial (I), the viscous-inertial (VI), and the diffusive-inertial (DI).
Regime $\skew{6}\hat{\mit\Delta}$             Extent in $Q$-$P$ space $c_\beta$ limit
           
RI $+2.124\,R_e^{3/4}\,R_E^{1/4}\,R_i^{1/4}$ $Q\ll 1$ $P\ll Q^{3/2}$ $Q\gg D^4$ $c_\beta\ll Q^{3/4}$
VR $+0.670\,R_e\,P_{\varphi}^{1/6}$ $P\ll Q^{-3}$ $P\gg Q^{3/2}$ $P\gg D^6$ $c_\beta\ll P^{1/2}$
SC $+3.142\,R_e\,R_E^{1/2}\,D^{-1}$ $Q\ll D$ $P\ll Q^2\,D^{-2}$ $Q\ll D^4$ $c_\beta\ll Q^{1/2}\,D$
DR $+2.124\,R_e\,P_\ast^{1/4}\,D^{-1/2}$ $P\ll D^2\,Q^{-2}$ $P\gg Q^2\,D^{-2}$ $P\ll D^6$ $c_\beta\ll P^{1/4}\, D^{3/2}$
I $-3.142\,R_E^{-1/2}\,R_i^{-1/2}$ $Q\gg 1$ $P\ll Q^3$ $Q\gg D$ $c_\beta\ll 1$
VI $-4.647\,R_e^{-1/4}\,P_\varphi^{-1/4}$ $P\gg Q^{-3}$ $P\gg Q^3$ $P\gg D^4\,Q^{-1}$ $c_\beta\ll Q^{-3/4}\,P^{1/4}$
DI $-3.142\,R_e^{-1/2}\,P_\ast^{-1/2}\,D$ $P\gg D^2\,Q^{-2}$ $Q\ll D$ $P\ll D^4\,Q^{-1}$ $c_\beta\ll Q^{-3/2}\,P^{-1/2}\,D^3$


Figure: 5.1 Linear resonant plasma response regimes in Q-P space for the case $D = 0.9$. The various regimes are the diffusive-resisitive (DR), the semi-collisional (SC), the resistive-inertial (RI), the viscous-resistive (VR), the viscous-inertial (VI), and the inertial (I).
\includegraphics[width=1.\textwidth]{Chapter05/Figure5_1.eps}

Table 5.2 summarizes the properties of the various linear resonant response regimes found in Sections 5.9 and 5.11. Here, we have made use of the abbreviations

$\displaystyle R_e$ $\displaystyle = -{\rm i}\,(Q- Q_E-Q_e),$ (5.110)
$\displaystyle R_E$ $\displaystyle = -{\rm i}\,(Q- Q_E),$ (5.111)
$\displaystyle R_i$ $\displaystyle = -{\rm i}\,(Q- Q_E-Q_i),$ (5.112)
$\displaystyle P_\ast$ $\displaystyle = \frac{P_\perp}{1+1/\tau}.$ (5.113)

In addition, Figures 5.1 and 5.2 show the extents of the various different response regimes in $Q$-$P$ space for the cases $D<1$ and $D>1$, respectively.

Figure: 5.2 Linear resonant plasma response regimes in Q-P space for the case $D =1.2$. The various regimes are the diffusive-resisitive (DR), the semi-collisional (SC), the diffusive-inertial (DI), the viscous-resistive (VR), the viscous-inertial (VI), and the inertial (I).
\includegraphics[width=1.\textwidth]{Chapter05/Figure5_2.eps}

Let $\hat{\delta}_\ast\sim p_\ast^{-1}$ be the normalized radial thickness of the resonant layer. Of course, the true thickness is $\delta_s = S^{-1/3}\,\hat{\delta}_\ast\,r_s$. It follows from Equation (5.69) that the relative change in the perturbed helical magnetic flux, $\tilde{\psi}$, across the layer is

$\displaystyle \left.\frac{d\ln\tilde{\psi}}{dX}\right\vert _{-\hat{\delta}/2}^{...
...}\hat{\mit\Delta}\,\hat{\delta}_\ast\sim \skew{6}\hat{\mit\Delta}\,p_\ast^{-1},$ (5.114)

According to the analysis of Section 5.9, $\skew{6}\hat{\mit\Delta}\,p_\ast^{-1}$ takes the respective values $Q^{1/2}$, $Q\,P^{1/3}$, $Q^2/D^2$, and $Q\,P^{1/2}/D$ in the resistive-inertial, viscous-resistive, semi-collisional, and diffusive-resistive response regimes. Moreover, it is clear from Figures 5.1 and 5.2 that these values are all much less than unity. In other words, it is indeed the case that $\tilde{\psi}$ does not vary substantially across a “constant-$\psi $” resonant layer. On the other hand, according to the analysis of Section 5.11, $\skew{6}\hat{\mit\Delta}\,p_\ast^{-1}\sim 1$ in the inertial, viscous-inertial, and diffusive-inertial response regimes, which implies that $\tilde{\psi}$ does vary substantially across a “nonconstant-$\psi $” layer.