Next: Enthalpy
Up: Classical Thermodynamics
Previous: Adiabatic Atmosphere
Equation (6.5) can be rearranged to give
![$\displaystyle dE=T dS - p dV.$](img1007.png) |
(6.82) |
This equation shows how the internal energy,
, depends on independent
variations of the entropy,
, and the volume,
. If
and
are considered to be the two independent parameters that specify the system then
![$\displaystyle E = E(S,V).$](img1008.png) |
(6.83) |
It immediately follows that
![$\displaystyle dE = \left(\frac{\partial E}{\partial S}\right)_V dS + \left(\frac{\partial E}{\partial V}\right)_S dV.$](img1009.png) |
(6.84) |
Now, Equations (6.82) and (6.84) must be equivalent for all possible values of
and
. Hence, we deduce that
We also know that
![$\displaystyle \frac{\partial^{ 2} E}{\partial V \partial S} = \frac{\partial^{ 2}E}{\partial S \partial V},$](img1014.png) |
(6.87) |
or
![$\displaystyle \left(\frac{\partial}{\partial V}\right)_S\left(\frac{\partial E}...
...rac{\partial}{\partial S}\right)_V\left(\frac{\partial E}{\partial V}\right)_S.$](img1015.png) |
(6.88) |
In fact, this is a necessary condition for
in Equation (6.84) to be an exact differential. (See Section 4.5.)
It follows from Equations (6.85) and (6.86) that
![$\displaystyle \left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial p}{\partial S}\right)_V.$](img1016.png) |
(6.89) |
Next: Enthalpy
Up: Classical Thermodynamics
Previous: Adiabatic Atmosphere
Richard Fitzpatrick
2016-01-25