Chew-Goldberger-Low Forms

As is well known, the smallness of the toroidal magnetization parameter, $\delta _s$, ensures that the dominant parallel viscosity tensors, $\pi$$_{\parallel\,s}$ and $\Theta$$_{\parallel\,s}$, take the so-called Chew-Goldberger-Low forms [11,29]:

$\displaystyle \mbox{\boldmath$\pi$}$$\displaystyle _{\parallel\,s}$ $\displaystyle = {\mit\Delta}\pi_{\parallel\,s}\left({\bf b}\,{\bf b}- \frac{1}{3}\,{\bf I}\right),$ (2.152)
$\displaystyle \mbox{\boldmath$\Theta$}$$\displaystyle _{\parallel\,s}$ $\displaystyle = {\mit\Delta}\Theta_{\parallel\,s}\left({\bf b}\,{\bf b}- \frac{1}{3}\,{\bf I}\right),$ (2.153)

where $\langle {\mit\Delta} \pi_{\parallel\,s}\rangle =\langle {\mit\Delta} \Theta_{\parallel\,s}\rangle = 0$. Incidentally, it is clear from Equation (2.60) that the parallel viscosity tensor in the classical closure scheme does indeed take this form.

Now, if $\pi$$_{\parallel\,s}$ takes the Chew-Goldberger-Low form then

$\displaystyle \nabla\psi\cdot$$\displaystyle \mbox{\boldmath$\pi$}$$\displaystyle _{\parallel\,s}\cdot {\bf b}$ $\displaystyle =0,$ (2.154)
$\displaystyle \nabla\psi\cdot$$\displaystyle \mbox{\boldmath$\pi$}$$\displaystyle _{\parallel\,s}\cdot\nabla\varphi$ $\displaystyle = 0.$ (2.155)

These results follow because ${\bf b}\cdot\nabla \psi=
\nabla\varphi\cdot\nabla\psi=0$.

Furthermore,

$\displaystyle R^2\,\nabla\varphi \cdot\nabla\cdot$$\displaystyle \mbox{\boldmath$\pi$}$$\displaystyle _{\parallel\,s} = \nabla\cdot\left(R^2\,\nabla\varphi\cdot\mbox{\...
...dmath$\pi$}_{\parallel\,s} : \widetilde{\nabla}\left(R^2\,\nabla\varphi\right),$ (2.156)

where, in Cartesian coordinates,

$\displaystyle \left(\widetilde{\bf A}\right)_{jk} = \frac{1}{2}\left(\frac{\partial A_j}{\partial r_k} + \frac{\partial A_k}{\partial r_j}\right),$ (2.157)

and use has been made of the fact that $\pi$$_{\parallel\,s}$ is a symmetric tensor. In fact, it can be shown that [19]

$\displaystyle \widetilde{\nabla}\left(R^2\,\nabla\varphi\right) = {\bf0}.$ (2.158)

Hence, we deduce that

$\displaystyle R^2\,\nabla\varphi \cdot\nabla\cdot$$\displaystyle \mbox{\boldmath$\pi$}$$\displaystyle _{\parallel\,s} = \nabla\cdot\left(R^2\,\nabla\varphi\cdot\mbox{\boldmath$\pi$}_{\parallel\,s}\right).$ (2.159)

Making use of Equation (2.150), we obtain

$\displaystyle \left\langle R^2\,\nabla\varphi \cdot\nabla\cdot\mbox{\boldmath$\...
...rphi\cdot\mbox{\boldmath$\pi$}_{\parallel\,s}\cdot\nabla {\cal V}\right\rangle.$ (2.160)

However, if $\pi$$_{\parallel\,s}$ takes the Chew-Goldberger-Low form then $\nabla\varphi\cdot$$\pi$$_{\parallel\,s}\cdot\nabla {\cal V}=0$, because ${\bf b}\cdot\nabla{\cal V}= \nabla\varphi\cdot\nabla{\cal V} = 0$. It follows that [32,34]

$\displaystyle \left\langle R^2\,\nabla\varphi \cdot\nabla\cdot\mbox{\boldmath$\pi$}_{\parallel\,s} \right\rangle =0.$ (2.161)

Likewise, if $\Theta$$_{\parallel\,s}$ takes the Chew-Goldberger-Low form then

$\displaystyle \left\langle R^2\,\nabla\varphi \cdot\nabla\cdot\mbox{\boldmath$\Theta$}_{\parallel\,s} \right\rangle =0.$ (2.162)