Friction Force Matrices

Let

$\displaystyle x_{ss'}=\frac{v_{t\,s'}}{v_{t\,s}}.$ (A.24)

In the following, all quantities that are of order $(m_e/m_i)^{\,1/2}$, $(m_e/m_I)^{\,1/2}$, or smaller, are neglected with respect to unity. The $2\times 2$ dimensionless ion collisional friction force matrices, $[F_{ii}](r)$, $[F_{iI}](r)$, $[F_{Ii}](r)$, and $[F_{II}](r)$, are defined to have the following elements (see Section 2.16) [7,9]:

$\displaystyle F_{ii\,11}$ $\displaystyle = \frac{\alpha_I\,(1+m_i/m_I)}{(1+x_{iI}^{\,2})^{3/2}},$ (A.25)
$\displaystyle F_{ii\,12}$ $\displaystyle =\frac{3}{2}\,\frac{\alpha_I\,(1+m_i/m_I)}{(1+x_{iI}^{\,2})^{5/2}},$ (A.26)
$\displaystyle F_{ii\,21}$ $\displaystyle =\frac{3}{2}\,\frac{\alpha_I\,(1+m_i/m_I)}{(1+x_{iI}^{\,2})^{5/2}},$ (A.27)
$\displaystyle F_{ii\,22}$ $\displaystyle =\sqrt{2}+ \frac{\alpha_I\,[13/4+4\,x_{iI}^{\,2}+(15/2)\,x_{iI}^{\,4}]}{(1+x_{iI}^{\,2})^{5/2}},$ (A.28)
$\displaystyle F_{iI\,11}$ $\displaystyle = \frac{\alpha_I\,(1+m_i/m_I)}{(1+x_{iI}^{\,2})^{3/2}},$ (A.29)
$\displaystyle F_{iI\,12}$ $\displaystyle =\frac{3}{2}\,\frac{T_i}{T_I}\,\frac{\alpha_I\,(1+m_I/m_i)}{x_{iI}\,(1+x_{Ii}^{\,2})^{5/2}},$ (A.30)
$\displaystyle F_{iI\,21}$ $\displaystyle =\frac{3}{2}\,\frac{\alpha_I\,(1+m_i/m_I)}{(1+x_{iI}^{\,2})^{5/2}},$ (A.31)
$\displaystyle F_{iI\,22}$ $\displaystyle =\frac{27}{4}\,\frac{T_i}{T_I}\,\frac{\alpha_I\,x_{iI}^{\,2}}{(1+x_{iI}^{\,2})^{5/2}},$ (A.32)
$\displaystyle F_{Ii\,11}$ $\displaystyle = \frac{\alpha_I\,(1+m_i/m_I)}{(1+x_{iI}^{\,2})^{3/2}},$ (A.33)
$\displaystyle F_{Ii\,12}$ $\displaystyle =\frac{3}{2}\,\frac{\alpha_I\,(1+m_i/m_I)}{(1+x_{iI}^{\,2})^{5/2}},$ (A.34)
$\displaystyle F_{iI\,21}$ $\displaystyle =\frac{3}{2}\,\frac{T_i}{T_I}\,\frac{\alpha_I\,(1+m_I/m_i)}{x_{iI}\,(1+x_{Ii}^{\,2})^{5/2}},$ (A.35)
$\displaystyle F_{Ii\,22}$ $\displaystyle =\frac{27}{4}\,\frac{\alpha_I\,x_{iI}^{\,2}}{(1+x_{iI}^{\,2})^{5/2}},$ (A.36)
$\displaystyle F_{II\,11}$ $\displaystyle = \frac{\alpha_I\,(1+m_i/m_I)}{(1+x_{iI}^{\,2})^{3/2}},$ (A.37)
$\displaystyle F_{II\,12}$ $\displaystyle =\frac{3}{2}\,\frac{T_i}{T_I}\,\frac{\alpha_I\,(1+m_I/m_i)}{x_{iI}\,(1+x_{Ii}^{\,2})^{5/2}},$ (A.38)
$\displaystyle F_{II\,21}$ $\displaystyle =\frac{3}{2}\,\frac{T_i}{T_I}\,\frac{\alpha_I\,(1+m_I/m_i)}{x_{iI}\,(1+x_{Ii}^{\,2})^{5/2}},$ (A.39)
$\displaystyle F_{II\,22}$ $\displaystyle =\frac{T_i}{T_I}\left\{\sqrt{2}\,\alpha_I^{\,2}\,x_{Ii} + \frac{\...
...,[
15/2+4\,x_{iI}^{\,2}+(13/4)\,x_{iI}^{\,4}]}{(1+x_{iI}^{\,2})^{5/2}}\right\}.$ (A.40)

The $2\times 2$ dimensionless electron collisional friction force matrices, $[F_{ee}](r)$, $[F_{ei}](r)$, and $F_{eI}(r)]$ are defined to have the following elements (see Section 2.16) [7,9]:

$\displaystyle F_{ee\,11}$ $\displaystyle = Z_{\rm eff},$ (A.41)
$\displaystyle F_{ee\,12}$ $\displaystyle = \frac{3}{2}\,Z_{\rm eff},$ (A.42)
$\displaystyle F_{ee\,21}$ $\displaystyle = \frac{3}{2}\,Z_{\rm eff},$ (A.43)
$\displaystyle F_{ee\,22}$ $\displaystyle = \sqrt{2} +\frac{13}{4}\,Z_{\rm eff},$ (A.44)
$\displaystyle F_{ei\,11}$ $\displaystyle = Z_{{\rm eff}\,i},$ (A.45)
$\displaystyle F_{ei\,12}$ $\displaystyle =0,$ (A.46)
$\displaystyle F_{ei\,21}$ $\displaystyle = \frac{3}{2}\,Z_{{\rm eff}\,i},$ (A.47)
$\displaystyle F_{ei\,22}$ $\displaystyle =0,$ (A.48)
$\displaystyle F_{eI\,11}$ $\displaystyle = Z_{{\rm eff}\,I},$ (A.49)
$\displaystyle F_{eI\,12}$ $\displaystyle =0,$ (A.50)
$\displaystyle F_{eI\,21}$ $\displaystyle = \frac{3}{2}\,Z_{{\rm eff}\,I},$ (A.51)
$\displaystyle F_{eI\,22}$ $\displaystyle = 0.$ (A.52)