The most common set of orbital elements used to parameterize Keplerian orbits consists of the major radius,
; the mean longitude at epoch,
; the eccentricity,
;
the inclination (relative to some reference plane),
; the longitude of the perihelion,
; and the longitude of the ascending node,
. (See Section 4.12.) The mean orbital angular velocity is
[see Equation (4.117)].
Consider how a particular Lagrange bracket transforms under
a rotation of the coordinate system
,
,
about the
-axis (if we look along the axis).
We can write
![$\displaystyle [p,q] = \frac{\partial(X,\dot{X})}{\partial (p,q)}+ \frac{\partial(Y,\dot{Y})}{\partial (p,q)}+ \frac{\partial(Z,\dot{Z})}{\partial (p,q)},$](img4708.png) |
(G.41) |
where
![$\displaystyle \frac{\partial (a,b)}{\partial (c,d)}\equiv \frac{\partial a}{\pa...
... b}{\partial d} - \frac{\partial a}{\partial d}\,\frac{\partial b}{\partial c}.$](img4709.png) |
(G.42) |
Let the new coordinate system be
. A rotation about the
-axis though an angle
brings the ascending node to the
-axis. See Figure 4.6.
The relation between the old and new coordinates is (see Section A.6)
The partial derivatives with respect to
can be written
![$\displaystyle \frac{\partial X}{\partial p}$](img4713.png) |
![$\displaystyle = A_1\,\cos{\mit\Omega} - B_1\,\sin{\mit\Omega},$](img4714.png) |
(G.46) |
![$\displaystyle \frac{\partial Y}{\partial p}$](img4715.png) |
![$\displaystyle = B_1\,\cos{\mit\Omega} +A_1\,\sin{\mit\Omega},$](img4716.png) |
(G.47) |
![$\displaystyle \frac{\partial \dot{X}}{\partial p}$](img4717.png) |
![$\displaystyle = C_1\,\cos{\mit\Omega} - D_1\,\sin{\mit\Omega},$](img4718.png) |
(G.48) |
![$\displaystyle \frac{\partial \dot{Y}}{\partial p}$](img4719.png) |
![$\displaystyle = D_1\,\cos{\mit\Omega} +C_1\,\sin{\mit\Omega},$](img4720.png) |
(G.49) |
where
![$\displaystyle A_1$](img4721.png) |
![$\displaystyle = \frac{\partial x'}{\partial p} - y'\,\frac{\partial {\mit\Omega}}{\partial p},$](img4722.png) |
(G.50) |
![$\displaystyle B_1$](img4723.png) |
![$\displaystyle = \frac{\partial y'}{\partial p} + x'\,\frac{\partial {\mit\Omega}}{\partial p},$](img4724.png) |
(G.51) |
![$\displaystyle C_1$](img2228.png) |
![$\displaystyle = \frac{\partial \dot{x}'}{\partial p} - \dot{y}'\,\frac{\partial {\mit\Omega}}{\partial p},$](img4725.png) |
(G.52) |
![$\displaystyle D_1$](img4726.png) |
![$\displaystyle = \frac{\partial \dot{y}'}{\partial p} + \dot{x}'\,\frac{\partial {\mit\Omega}}{\partial p}.$](img4727.png) |
(G.53) |
Let
,
,
, and
be the equivalent quantities
obtained by replacing
by
in the preceding equations.
It thus follows that
Hence,
![$\displaystyle [p,q] = A_1\,C_2-A_2\,C_1 + B_1\,D_2-B_2\,D_1+ \frac{\partial(Z,\dot{Z})}{\partial(p,q)}.$](img4735.png) |
(G.56) |
Now,
Similarly,
Let
![$\displaystyle [p,q]' = \frac{\partial(x',\dot{x}')}{\partial (p,q)}+ \frac{\partial(y',\dot{y}')}{\partial (p,q)}+ \frac{\partial(z',\dot{z}')}{\partial (p,q)}.$](img4743.png) |
(G.59) |
Because
and
, it follows that
However,
![$\displaystyle x'\,\dot{y}'-y'\,\dot{x}' = h\,\cos\,I = [\mu\,a\,(1-e^{\,2})]^{1/2}\,\cos\,I \equiv {\cal G},$](img4750.png) |
(G.61) |
because the left-hand side is the component of the angular momentum per unit mass parallel to
the
-axis. Of course, this axis is inclined at an angle
to the
-axis, which is parallel to the angular momentum vector.
Thus, we obtain
![$\displaystyle [p,q] = [p,q]' + \frac{\partial({\mit\Omega}, {\cal G})}{\partial (p,q)}.$](img4751.png) |
(G.62) |
Consider a rotation of the coordinate system about the
-axis. Let the
new coordinate system be
,
,
. A rotation through an
angle
brings the orbit into the
-
plane. See Figure 4.6.
Let
![$\displaystyle [p,q]'' = \frac{\partial(x'',\dot{x}'')}{\partial (p,q)}+ \frac{\...
...'',\dot{y}'')}{\partial (p,q)}+ \frac{\partial(z'',\dot{z}'')}{\partial (p,q)}.$](img4752.png) |
(G.63) |
By analogy
with the previous analysis,
![$\displaystyle [p,q]' = [p,q]'' + \frac{\partial(I,y''\,\dot{z}''-z''\,\dot{y}'')}{\partial(p,q)}.$](img4753.png) |
(G.64) |
However,
and
are both zero, because the orbit lies
in the
-
plane. Hence,
![$\displaystyle [p,q]'=[p,q]''.$](img4755.png) |
(G.65) |
Consider, finally, a rotation of the coordinate system about the
-axis. Let the
final coordinate system be
,
,
. A rotation through an angle
brings the perihelion to the
-axis. See Figure 4.6.
Let
![$\displaystyle [p,q]''' = \frac{\partial(x,\dot{x})}{\partial (p,q)}+ \frac{\partial(y,\dot{y})}{\partial (p,q)}.$](img4757.png) |
(G.66) |
By analogy with the previous analysis,
![$\displaystyle [p,q]'' = [p,q]''' + \frac{\partial(\varpi-{\mit\Omega},x\,\dot{y}-y\,\dot{x})}{\partial (p,q)}.$](img4758.png) |
(G.67) |
However,
![$\displaystyle x\,\dot{y}-y\,\dot{x} = h= [\mu\,a\,(1-e^{\,2})]^{1/2}\equiv H,$](img4759.png) |
(G.68) |
so, from Equations (G.62) and (G.65),
![$\displaystyle [p,q] = [p,q]''' + \frac{\partial(\varpi-{\mit\Omega},H )}{\partial (p,q)}
+ \frac{\partial({\mit\Omega}, {\cal G})}{\partial (p,q)}.$](img4760.png) |
(G.69) |
It thus remains to calculate
.
The coordinates
and
—where
represents radial distance from the Sun, and
is the true anomaly—are functions of the major radius,
,
the eccentricity,
, and the mean anomaly,
.
Because the Lagrange brackets
are independent of time, it is sufficient to evaluate them at
; that is, at the perihelion point. It is easily
demonstrated from Equations (4.86) and (4.87) that
![$\displaystyle x$](img384.png) |
![$\displaystyle = a\,(1-e)+ {\cal O}({\cal M}^{\,2}),$](img4763.png) |
(G.70) |
![$\displaystyle y$](img386.png) |
![$\displaystyle = a\,{\cal M}\left(\frac{1+e}{1-e}\right)^{1/2}+{\cal O}({\cal M}^{\,3}),$](img4764.png) |
(G.71) |
![$\displaystyle \dot{x}$](img4765.png) |
![$\displaystyle = -a\,n\,\frac{{\cal M}}{(1-e)^2}+{\cal O}({\cal M}^{\,3}),$](img4766.png) |
(G.72) |
![$\displaystyle \dot{y}$](img4767.png) |
![$\displaystyle = a\,n\left(\frac{1+e}{1-e}\right)^{1/2}+{\cal O}({\cal M}^{\,2})$](img4768.png) |
(G.73) |
at small
. Hence, at
,
![$\displaystyle \frac{\partial x}{\partial a}$](img4769.png) |
![$\displaystyle = 1-e,$](img4770.png) |
(G.74) |
![$\displaystyle \frac{\partial x}{\partial e}$](img4771.png) |
![$\displaystyle = -a,$](img4772.png) |
(G.75) |
![$\displaystyle \frac{\partial y}{\partial (\skew{5}\bar{\lambda}_0-\varpi)}$](img4773.png) |
![$\displaystyle = a\left(\frac{1+e}{1-e}\right)^{1/2},$](img4774.png) |
(G.76) |
![$\displaystyle \frac{\partial\dot{x}}{\partial(\skew{5}\bar{\lambda}_0-\varpi)}$](img4775.png) |
![$\displaystyle =- \frac{a\,n}{(1-e)^2},$](img4776.png) |
(G.77) |
![$\displaystyle \frac{\partial\dot{y}}{\partial a}$](img4777.png) |
![$\displaystyle = -\frac{n}{2}\left(\frac{1+e}{1-e}\right)^{1/2},$](img4778.png) |
(G.78) |
![$\displaystyle \frac{\partial\dot{y}}{\partial e}$](img4779.png) |
![$\displaystyle = a\,n\,(1+e)^{-1/2}\,(1-e)^{-3/2},$](img4780.png) |
(G.79) |
because
. All other partial derivatives are zero.
Because the orbit in the
,
,
coordinate system only
depends on the elements
,
, and
, we
can write
Substitution of the values of the derivatives evaluated at
into this expression yields
and
![$\displaystyle [p,q]'''= \frac{\partial(\skew{5}\bar{\lambda}_0-\varpi,a)}{\part...
...2\,a^{1/2}} = \frac{\partial(\skew{5}\bar{\lambda}_0-\varpi,L)}{\partial(p,q)},$](img4791.png) |
(G.84) |
where
.
Hence, from Equation (G.69), we obtain
![$\displaystyle [p,q] = \frac{\partial(\skew{5}\bar{\lambda}_0-\varpi,L)}{\partia...
...H )}{\partial (p,q)}
+ \frac{\partial({\mit\Omega}, {\cal G})}{\partial (p,q)}.$](img4793.png) |
(G.85) |