(11.113) | ||
(11.114) | ||
(11.115) |
Let us write
Here, the , , , , et cetera, are constants.Equations (11.110)–(11.124) can be combined to give
(11.125) | ||
(11.126) | ||
(11.127) | ||
(11.128) | ||
(11.129) | ||
(11.130) | ||
(11.131) | ||
(11.132) | ||
(11.133) | ||
(11.134) | ||
(11.135) | ||
(11.136) | ||
(11.137) | ||
(11.138) | ||
(11.139) |
(11.140) | ||
(11.141) | ||
(11.142) | ||
(11.143) | ||
(11.144) | ||
(11.145) | ||
(11.146) | ||
(11.147) | ||
(11.148) | ||
(11.149) | ||
(11.150) | ||
(11.151) |
(11.157) | ||
(11.158) | ||
(11.159) | ||
(11.160) | ||
(11.161) | ||
(11.162) | ||
(11.163) | ||
(11.164) | ||
(11.165) | ||
(11.166) | ||
(11.167) | ||
(11.168) | ||
(11.169) | ||
(11.170) | ||
(11.171) |
(11.172) | ||
(11.173) | ||
(11.174) | ||
(11.175) | ||
(11.176) | ||
(11.177) | ||
(11.178) | ||
(11.179) | ||
(11.180) | ||
(11.181) | ||
(11.182) | ||
(11.183) |
Substitution of Equations (11.116), (11.117), (11.119), and (11.120) into Equations (11.107) and (11.108) yields
for , as well as as well as for . In the previous two equations, for , and otherwise. Moreover,(11.194) | ||
(11.195) | ||
(11.196) | ||
(11.197) | ||
(11.198) | ||
(11.199) | ||
(11.200) | ||
(11.201) | ||
(11.202) | ||
(11.203) | ||
(11.204) | ||
(11.205) |
Substituting Equations (11.118) and (11.121) into Equation (11.109), we obtain
and for . In the previous equation, for , and otherwise. Moreover,In the following few sections, we shall develop our solution of the lunar equations of motion in a systematic fashion by considering groups of similar terms separately.