Next: Useful definitions
Up: Lunar motion
Previous: Solar orbit
Let
. It is helpful to define
as well as
Here,
,
,
and
,
,
are the Cartesian coordinates of the Moon (relative to the Earth) and the
Sun (relative to the Earth-Moon barycenter), respectively, in a reference frame that rotates at angular velocity
(i.e., the Moon's
mean orbital angular velocity) about an axis perpendicular to the ecliptic plane.
Note that if the lunar orbit were a circle, centered on the Earth, and lying in the ecliptic plane, then the coordinates
,
, and
would all be
independent of time. In fact, the small eccentricity of the lunar orbit,
, combined with its slight inclination to the
ecliptic plane,
, as well as the various solar perturbations, generate small-amplitude oscillations in
,
, and
(Yoder 1995).
Equations (11.41)-(11.43) and (11.47)-(11.49) yield
It is also easily demonstrated that
 |
(11.53) |
The Cartesian components of the lunar equation of motion, (11.33), are
|
|
 |
 |
(11.54) |
|
|
 |
 |
(11.55) |
and |
|
 |
 |
|
|
(11.56) |
Making use of Equations (11.44)-(11.46), the previous expressions transform to give
Here,
,
,
, et cetera.
It is convenient, at this stage, to adopt the following normalization scheme:
with
,
, and
.
In normalized form, Equation (11.50)-(11.53) become
whereas
Equations (11.57)-(11.59) yield
Here,
where
 |
(11.75) |
and
 |
(11.76) |
Furthermore,
,
, et cetera. Finally,
and
.
Equations (11.62)-(11.65) and (11.69)-(11.71) yield
|
|
 |
![$\displaystyle \simeq m^{\,2}\left\{ \frac{1}{2}+\frac{3}{2}\,\cos[2\,(1-m)\,T]+\frac{3}{2}\,e'\,\cos(m\,T) -\frac{3}{4}\,e'\,\cos[(2-m)\,T]\right.$](img3114.png) |
|
|
|
|
![$\displaystyle \phantom{=}\left.+\frac{21}{4}\,e'\,\cos[(2-3\,m)\,T]\right\}X+m^{\,2}\left\{-\frac{3}{2}\,\sin[2\,(1-m)\,T]\right.$](img3115.png) |
|
|
|
|
![$\displaystyle \phantom{=}\left. +\frac{3}{4}\,e'\,\sin[(2-m)\,T]-\frac{21}{4}\,e'\,\sin[(2-3\,m)\,T]\right\}Y,$](img3116.png) |
(11.77) |
|
|
 |
![$\displaystyle \simeq m^{\,2}\left\{ \frac{1}{2}-\frac{3}{2}\,\cos[2\,(1-m)\,T]+\frac{3}{2}\,e'\,\cos(m\,T) +\frac{3}{4}\,e'\,\cos[(2-m)\,T]\right.$](img3117.png) |
|
|
|
|
![$\displaystyle \phantom{=}\left.-\frac{21}{4}\,e'\,\cos[(2-3\,m)\,T]\right\}Y+m^{\,2}\left\{-\frac{3}{2}\,\sin[2\,(1-m)\,T]\right.$](img3118.png) |
|
|
|
|
![$\displaystyle \phantom{=}\left.+\frac{3}{4}\,e'\,\sin[(2-m)\,T] -\frac{21}{4}\,e'\,\sin[(2-3\,m)\,T]\right\}X,$](img3119.png) |
(11.78) |
and |
|
 |
![$\displaystyle \simeq m^{\,2}\left[-1-3\,e'\,\cos(m\,T)\right]Z.$](img3120.png) |
|
|
(11.79) |
Likewise, (11.62)-(11.65) and (11.72)-(11.74) give
Here, we have we have neglected terms that are third order, or greater, in the small parameters
,
, and
.
Finally, let us write
Here,
is a constant, and
,
,
,
.
Expanding Equations (11.66)-(11.68) and (11.77)-(11.82), and neglecting terms that are third order, or greater, in the small parameters
,
,
,
,
,
, and
, we obtain
where
|
|
 |
 |
(11.89) |
|
|
 |
![$\displaystyle \simeq \frac{3}{2}\,m^{\,2}\,X_0\,\cos[2\,(1-m)\,T]$](img3150.png) |
|
|
|
|
![$\displaystyle \phantom{=} +\frac{3}{2}\,m^{\,2}\,e'\,\cos(m\,T) + \frac{21}{4}\,m^{\,2}\,e'\,\cos[(2-3\,m)\,T]-\frac{3}{4}\,m^{\,2}\,e'\,\cos[(2-m)\,T]$](img3151.png) |
|
|
|
|
![$\displaystyle \phantom{=} +\frac{9}{8}\,m^{\,2}\,\zeta\,\cos[(1-m)\,T] + \frac{15}{8}\,m^{\,2}\,\zeta\,\cos[3\,(1-m)\,T]$](img3152.png) |
|
|
|
|
![$\displaystyle \phantom{=}+ \frac{3}{2}\,m^{\,2}\,\cos[2\,(1-m)\,T]\,\delta X -\frac{3}{2}\,m^{\,2}\,\sin[2\,(1-m)\,T]\,\delta Y$](img3153.png) |
|
|
|
|
 |
(11.90) |
|
|
 |
![$\displaystyle \simeq -\frac{3}{2}\,m^{\,2}\,X_0\,\sin[2\,(1-m)\,T]$](img3156.png) |
|
|
|
|
![$\displaystyle \phantom{=} - \frac{21}{4}\,m^{\,2}\,e'\,\sin[(2-3\,m)\,T]+\frac{3}{4}\,m^{\,2}\,e'\,\sin[(2-m)\,T]$](img3157.png) |
|
|
|
|
![$\displaystyle \phantom{=} -\frac{3}{8}\,m^{\,2}\,\zeta\,\sin[(1-m)\,T] - \frac{15}{8}\,m^{\,2}\,\zeta\,\sin[3\,(1-m)\,T],$](img3158.png) |
(11.91) |
|
|
|
![$\displaystyle \phantom{=}-\frac{3}{2}\,m^{\,2}\,\sin[2\,(1-m)\,T]\,\delta X -\frac{3}{2}\,m^{\,2}\,\cos[2\,(1-m)\,T]\,\delta Y+3\,\delta X\,\delta Y,$](img3159.png) |
(11.92) |
and |
|
 |
 |
|
|
(11.93) |
After Equations (11.86)-(11.93) have been solved for
,
,
, and
, the geocentric Cartesian coordinates, (
,
,
), of the Moon in the
non-rotating reference
frame are obtained from Equations (11.44)-(11.46), (11.60)-(11.61), and (11.83)-(11.85). However, it is more convenient to write
,
, and
, where
is the radial distance between the Earth and Moon, and
and
are termed the Moon's geocentric (i.e., centered on the Earth) ecliptic
longitude and ecliptic latitude, respectively. Moreover, it is easily seen that, neglecting terms that are third order, or greater, in the small parameters
,
,
, and
,
Next: Useful definitions
Up: Lunar motion
Previous: Solar orbit
Richard Fitzpatrick
2016-03-31