next up previous
Next: Fluid Equations in Cylindrical Up: Mathematical Models of Fluid Previous: Dimensionless Numbers in Compressible


Fluid Equations in Cartesian Coordinates

Let us adopt the conventional Cartesian coordinate system, ($ x$ , $ y$ , $ z$ ). According to Equation (1.26), the various components of the stress tensor are

$\displaystyle \sigma_{xx}$ $\displaystyle = -p + 2\,\mu\,\frac{\partial v_x}{\partial x},$ (1.127)
$\displaystyle \sigma_{yy}$ $\displaystyle = -p + 2\,\mu\,\frac{\partial v_y}{\partial y},$ (1.128)
$\displaystyle \sigma_{zz}$ $\displaystyle = -p + 2\,\mu\,\frac{\partial v_z}{\partial z},$ (1.129)
$\displaystyle \sigma_{xy}=\sigma_{yx}$ $\displaystyle = \mu\left(\frac{\partial v_x}{\partial y}+\frac{\partial v_y}{\partial x}\right),$ (1.130)
$\displaystyle \sigma_{xz}=\sigma_{zx}$ $\displaystyle = \mu\left(\frac{\partial v_x}{\partial z}+\frac{\partial v_z}{\partial x}\right),$ (1.131)
$\displaystyle \sigma_{yz}=\sigma_{zy}$ $\displaystyle = \mu\left(\frac{\partial v_y}{\partial z}+\frac{\partial v_z}{\partial y}\right),$ (1.132)

where $ {\bf v}$ is the velocity, $ p$ the pressure, and $ \mu$ the viscosity. The equations of compressible fluid flow, (1.87)-(1.89) (from which the equations of incompressible fluid flow can easily be obtained by setting $ {\mit\Delta}=0$ ), become

$\displaystyle \frac{D\rho}{Dt}$ $\displaystyle =-\rho\,{\mit\Delta},$ (1.133)
$\displaystyle \frac{Dv_x}{Dt}$ $\displaystyle = - \frac{1}{\rho}\,\frac{\partial p}{\partial x} - \frac{\partia...
...\nabla^{\,2} v_x + \frac{1}{3}\,\frac{\partial{\mit\Delta}}{\partial x}\right),$ (1.134)
$\displaystyle \frac{Dv_y}{Dt}$ $\displaystyle = - \frac{1}{\rho}\,\frac{\partial p}{\partial y} - \frac{\partia...
...\nabla^{\,2} v_y + \frac{1}{3}\,\frac{\partial{\mit\Delta}}{\partial y}\right),$ (1.135)
$\displaystyle \frac{Dv_z}{Dt}$ $\displaystyle = - \frac{1}{\rho}\,\frac{\partial p}{\partial z} - \frac{\partia...
...\nabla^{\,2} v_z + \frac{1}{3}\,\frac{\partial{\mit\Delta}}{\partial z}\right),$ (1.136)
$\displaystyle \frac{1}{\gamma-1}\left(\frac{D\rho}{Dt} - \frac{\gamma\,p}{\rho}\,\frac{D\rho}{Dt}\right)$ $\displaystyle =\chi + \frac{\kappa\,M}{R}\,\nabla^{\,2}\left(\frac{p}{\rho}\right),$ (1.137)

where $ \rho$ is the mass density, $ \gamma$ the ratio of specific heats, $ \kappa$ the heat conductivity, $ M$ the molar mass, and $ R$ the molar ideal gas constant. Furthermore,

$\displaystyle {\mit\Delta}$ $\displaystyle =\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z},$ (1.138)
$\displaystyle \frac{D}{Dt}$ $\displaystyle = \frac{\partial}{\partial t} + v_x\,\frac{\partial }{\partial x} + v_y\,\frac{\partial}{\partial y} + v_z\,\frac{\partial}{\partial z},$ (1.139)
$\displaystyle \nabla^{\,2}$ $\displaystyle =\frac{\partial^{\,2}}{\partial x^{\,2}} + \frac{\partial^{\,2}}{\partial y^{\,2}}+\frac{\partial^{\,2}}{\partial z^{\,2}},$ (1.140)
$\displaystyle \chi$ $\displaystyle =2\,\mu\left[\left(\frac{\partial v_x}{\partial x}\right)^2+\left...
...\frac{\partial v_x}{\partial y}+\frac{\partial v_y}{\partial x}\right)^2\right.$    
  $\displaystyle \phantom{=}\left.+\frac{1}{2}\left(\frac{\partial v_x}{\partial z...
...frac{\partial v_y}{\partial z}+\frac{\partial v_z}{\partial y}\right)^2\right].$ (1.141)

Here, $ \gamma$ , $ \mu$ , $ \kappa$ , and $ M$ are treated as uniform constants.


next up previous
Next: Fluid Equations in Cylindrical Up: Mathematical Models of Fluid Previous: Dimensionless Numbers in Compressible
Richard Fitzpatrick 2016-03-31