next up previous
Next: An example 1D PIC Up: Particle-in-cell codes Previous: Evaluation of electron number

Solution of Poisson's equation

Consider the solution of Poisson's equation:
\begin{displaymath}
\frac{d^2\phi(x)}{dx^2} = \rho(x),
\end{displaymath} (303)

where $\rho(x) = n(x)/n_0-1$. Note that $n_0 = N/L$ in normalized units. Let $\phi_j\equiv\phi(x_j)$ and $\rho_j\equiv
\rho(x_j)$. We can write
$\displaystyle \phi_j$ $\textstyle =$ $\displaystyle \sum_{j'=0,J-1}\hat{\phi}_{j'} \,{\rm e}^{\,{\rm i}\,j\,j'\,2\,\pi/J},$ (304)
$\displaystyle \rho_j$ $\textstyle =$ $\displaystyle \sum_{j'=0,J-1}\hat{\rho}_{j'} \,{\rm e}^{\,{\rm i}\,j\,j'\,2\,\pi/J},$ (305)

which automatically satisfies the periodic boundary conditions $\phi_J=\phi_0$ and $\rho_J=\rho_0$. Note that $\hat{\rho}_0=0$, since $\int_0^L n(x)\,dx = n_0$. The other $\hat{\rho}_j$ are obtained from
\begin{displaymath}
\hat{\rho}_j = \frac{1}{J}\sum_{j'=0,J-1}\rho_{j'} \,{\rm e}^{-{\rm i}\,j\,j'\,2\,\pi/J},
\end{displaymath} (306)

for $j=1,J-1$. The Fourier transformed version of Poisson's equation yields
\begin{displaymath}
\hat{\phi}_0 = 0
\end{displaymath} (307)

and
\begin{displaymath}
\hat{\phi}_j = - \frac{\hat{\rho}_j}{j^2\,\kappa^2}
\end{displaymath} (308)

for $j=1,J/2$, where $\kappa = 2\pi / L$. Finally,
\begin{displaymath}
\hat{\phi}_j = \hat{\phi}^\ast_{J-j}
\end{displaymath} (309)

for $j=J/2+1$ to $J-1$, which ensures that the $\phi_j$ remain real. The discretized version of Eq. (297) is
\begin{displaymath}
E_j = \frac{\phi_{j-1}-\phi_{j+1}}{2\,\delta x}.
\end{displaymath} (310)

Of course, $j=0$ and $j=J-1$ are special cases which can be resolved using the periodic boundary conditions. Finally, suppose that the coordinate of the $i$th electron lies between the $j$th and $(j+1)$th grid-points: i.e., $x_j < r_i < x_{j+1}$. We can then use linear interpolation to evaluate the electric field seen by the $i$th electron:
\begin{displaymath}
E(r_i) = \left(\frac{x_{j+1}-r_i}{x_{j+1}-x_j}\right)E_j+\left(\frac{r_i - x_j}{x_{j+1}-x_j}\right)
E_{j+1}.
\end{displaymath} (311)


next up previous
Next: An example 1D PIC Up: Particle-in-cell codes Previous: Evaluation of electron number
Richard Fitzpatrick 2006-03-29