next up previous
Next: Factorization of Spinor-Wavefunctions Up: Spin Angular Momentum Previous: Pauli Two-Component Formalism


Spinor Rotation Matrices

A general rotation operator in spin space is written

$\displaystyle T ({\mit\Delta}\phi) = \exp\left(\frac{-{\rm i} \,{\bf S}\cdot{\bf n}\,{\mit\Delta}\varphi}{\hbar}\right),$ (5.95)

by analogy with Equation (5.24), where $ {\bf n}$ is a unit vector pointing along the axis of rotation, and $ {\mit\Delta}\varphi$ is the angle of rotation. Here, $ {\bf n}$ can be regarded as a trivial position operator. The rotation operator is represented

$\displaystyle \exp\left(\frac{-{\rm i} \,{\bf S}\cdot{\bf n}\,{\mit\Delta}\varp...
...-{\rm i} \,\mbox{\boldmath$\sigma$}\cdot{\bf n}\,{\mit\Delta}\varphi}{2}\right)$ (5.96)

in the Pauli scheme. The term on the right-hand side of the previous expression is the exponential of a matrix. This can easily be evaluated using the Taylor series for an exponential, plus the rules

$\displaystyle ($$\displaystyle \mbox{\boldmath$\sigma$}$$\displaystyle \cdot {\bf n})^k$ $\displaystyle = 1$   $\displaystyle \mbox{for $k$\ even}$$\displaystyle ,$ (5.97)
$\displaystyle ($$\displaystyle \mbox{\boldmath$\sigma$}$$\displaystyle \cdot {\bf n})^k$ $\displaystyle =$$\displaystyle \mbox{\boldmath$\sigma$}$$\displaystyle \cdot {\bf n}$   $\displaystyle \mbox{for $k$\ odd}$$\displaystyle .$ (5.98)

These rules follow trivially from the identity (5.93). Thus, we can write

$\displaystyle \exp\left(\frac{-{\rm i} \,\mbox{\boldmath$\sigma$}\!\cdot\!{\bf n}\,{\mit\Delta}\varphi}{2}\right)$ $\displaystyle = \left[ 1 - \frac{(\mbox{\boldmath$\sigma$}\cdot {\bf n})^2}{2!}...
...t {\bf n})^4}{4!} \left(\frac{{\mit\Delta}\varphi}{2} \right)^4 + \cdots\right]$    
  $\displaystyle \phantom{=}- {\rm i} \left[ (\mbox{\boldmath$\sigma$}\cdot {\bf n...
...ot {\bf n})^3}{3!} \left(\frac{{\mit\Delta}\varphi}{2}\right)^3 + \cdots\right]$    
  $\displaystyle = \cos({\mit\Delta}\varphi/2)- {\rm i}\,\sin ({\mit\Delta}\varphi/2)\,$$\displaystyle \mbox{\boldmath$\sigma$}$$\displaystyle \cdot{\bf n}.$ (5.99)

The explicit $ 2\times 2$ form of this matrix is

$\displaystyle \left(\begin{array}{cc} \cos({\mit\Delta}\varphi/2) - {\rm i}\,n_...
...lta}\varphi/2) + {\rm i}\, n_z \sin({\mit\Delta}\varphi/2) \end{array} \right).$ (5.100)

Rotation matrices act on spinors in much the same manner as the corresponding rotation operators act on state kets. Thus,

$\displaystyle \chi' = \exp\left(\frac{-{\rm i} \,\mbox{\boldmath$\sigma$}\cdot{\bf n}\,{\mit\Delta}\varphi}{2}\right) \,\chi,$ (5.101)

where $ \chi'$ denotes the spinor obtained after rotating the spinor $ \chi$ an angle $ {\mit\Delta}\varphi$ about the axis $ {\bf n}$ . The Pauli matrices remain unchanged under rotations. However, the quantity $ \chi^\dagger \,\sigma_k \,\chi$ is proportional to the expectation value of $ S_k$ [see Equation (5.75)], so we would expect it to transform like a vector under rotation. (See Section 5.4.) In fact, we require

$\displaystyle (\chi^\dagger \,\sigma_k \,\chi)' \equiv (\chi^\dagger)' \sigma_k\, \chi' = \sum_l R_{k\,l}\, (\chi^\dagger \sigma_l\, \chi),$ (5.102)

where the $ R_{kl}$ are the elements of a conventional rotation matrix [92]. This is easily demonstrated, because

$\displaystyle \exp\left(\frac{\,{\rm i}\,\sigma_3 \,{\mit\Delta}\varphi}{2}\rig...
...{2}\right) = \sigma_1 \cos{\mit\Delta}\varphi -\sigma_2 \sin{\mit\Delta}\varphi$ (5.103)

plus all cyclic permutations. The previous expression is the $ 2\times 2$ matrix analog of

$\displaystyle \exp\left(\frac{\,{\rm i}\,S_z \,{\mit\Delta}\varphi}{\hbar}\righ...
...}{\hbar}\right) = S_x\, \cos{\mit\Delta}\varphi -S_y\, \sin{\mit\Delta}\varphi.$ (5.104)

[See Equation (5.30).] Equation (5.103) follows from the Baker-Campbell-Hausdorff lemma, (5.31), which holds for matrices, in addition to operators.


next up previous
Next: Factorization of Spinor-Wavefunctions Up: Spin Angular Momentum Previous: Pauli Two-Component Formalism
Richard Fitzpatrick 2016-01-22