Next: Spin Precession
Up: Spin Angular Momentum
Previous: Rotation Operators in Spin
Magnetic Moments
Consider a particle of electric charge
and speed
performing a circular orbit of radius
in the
-
plane. The charge is equivalent to a current loop of radius
, lying
in the
-
plane, and carrying a current
. The magnetic moment
of
the loop is of magnitude
and is directed along the
-axis (the direction is given
by a right-hand rule with the fingers of the right-hand circulating in the same direction as the current) [49].
Thus, we can write
  |
(5.42) |
where
and
are the vector position and velocity of the particle,
respectively. However, we know that
, where
is the particle's vector momentum, and
its mass. We also know that
, where
is the orbital angular momentum.
It follows that
  |
(5.43) |
Using the standard analogy between classical and quantum mechanics, we
expect the previous relation to also hold between the quantum mechanical operators,
and
, which represent magnetic moment and orbital angular momentum,
respectively.
This is indeed found to the the case experimentally.
Spin angular momentum also gives rise to a contribution to the magnetic
moment of a charged particle. In fact, relativistic quantum
mechanics predicts that a charged particle possessing spin must also
possess a corresponding magnetic moment [30,32,9]. We can write
 ![$\displaystyle = \frac{q}{2\,m} \left[{\bf L} + {\rm sgn}(q)\,g \,{\bf S}\right],$](img1388.png) |
(5.44) |
where the parameter
is called the
-factor. For an electron this factor
is found to be
 |
(5.45) |
where
 |
(5.46) |
is the fine structure constant.
The factor
is correctly predicted by Dirac's famous relativistic theory of the electron [30,32]. (See Chapter 11.)
The small correction
is due to
quantum field effects [101]. We shall ignore this correction in the following,
so
  |
(5.47) |
for an electron. (Here,
is the magnitude of the electron charge, and
the electron mass.)
Next: Spin Precession
Up: Spin Angular Momentum
Previous: Rotation Operators in Spin
Richard Fitzpatrick
2016-01-22