Solution of Plasma Angular Equations of Motion

In many situations of interest, the perturbed angular velocity profiles, ${\mit\Delta\Omega}_\theta(r,t)$ and ${\mit\Delta\Omega}_z(r,t)$, are localized in the vicinity of the rational surface [4]. Hence, it is reasonable to express the perturbed angular equations of motion, (3.161) and (3.165), in the simplified forms

$\displaystyle 4\pi^2\,R_0\left[\rho_s\,r^3\,\frac{\partial {\mit\Delta\Omega}_\...
...\!\left(r^3\,\frac{\partial{\mit\Delta\Omega}_\theta}{\partial r}\right)\right]$ $\displaystyle =T_{\theta\,s}\,\delta(r-r_s),$ (3.168)
$\displaystyle 4\pi^2\,R_0^{\,3}\left[\rho_s\,r\,\frac{\partial {\mit\Delta\Omeg...
...artial{\mit\Delta\Omega}_z}{\partial r}\right)\right]
=T_{z\,s}\,\delta(r-r_s),$ (3.169)

where $\rho_s=\rho(r_s)$, $\tau_{\theta}=\tau_{\theta\,i}(r_s)$, and ${\mit\Xi}_{\perp\,s}={\mit\Xi}_{\perp\,i}(r_s)$.

Let us write [3,5]

$\displaystyle {\mit\Delta\Omega}_\theta(r,t)$ $\displaystyle = - \frac{1}{m}\sum_{p=1,\infty} \alpha_p(t)\,\frac{y_p(r)}{y_p(r_s)},$ (3.170)
$\displaystyle {\mit\Delta\Omega}_z(r,t)$ $\displaystyle = \frac{1}{n}\sum_{p=1,\infty} \beta_p(t)\,\frac{z_p(r)}{z_p(r_s)},$ (3.171)

where

$\displaystyle y_p(r)$ $\displaystyle = \frac{J_1(j_{1p}\,r/a)}{r/a},$ (3.172)
$\displaystyle z_p(r)$ $\displaystyle = J_0(j_{0p}\,r/a).$ (3.173)

Here, $J_m(z)$ is a Bessel function, and $j_{mp}$ denotes its $p$th zero [1]. Note that Equations (3.170)–(3.173) automatically satisfy the boundary conditions (3.166) and (3.167).

It is easily demonstrated that [13]

$\displaystyle \frac{d}{dr}\!\left(r^{3}\,\frac{dy_p}{dr}\right)$ $\displaystyle = -\frac{j_{1p}^{\,2}\,r^{3}\,y_p}{a^{2}},$ (3.174)
$\displaystyle \frac{d}{dr}\!\left(r\,\frac{dz_p}{dr}\right)$ $\displaystyle = -\frac{j_{0p}^{\,2}\,r\,z_p}{a^{2}},$ (3.175)

and

$\displaystyle \int_0^a r^{3}\,y_p(r)\,y_q(r)\,dr$ $\displaystyle = \frac{a^{4}}{2}\,[J_2(j_{1p})]^{\,2}\,\delta_{pq},$ (3.176)
$\displaystyle \int_0^a r\,z_p(r)\,z_q(r)\,dr$ $\displaystyle = \frac{a^{2}}{2}\,[J_1(j_{0p})]^{\,2}\,\delta_{pq}.$ (3.177)

Equations (3.139), (3.140), and (3.168)–(3.177) yield

$\displaystyle \frac{d\alpha_p}{dt} + \left(\frac{1}{\tau_{\theta}}+\frac{j_{1p}^{\,2}}{\tau_{M}}\right)\alpha_p$ $\displaystyle = \frac{m^{2}\,[J_1(j_{1p}\,r_s/a)]^{\,2}}{\tau_A^{\,2}\,\epsilon...
..._{1p})]^{\,2}}\,
{\rm Im}({\mit\Delta\hat{\Psi}_s}\,\hat{\mit\Psi}_s^{\,\ast}),$ (3.178)
$\displaystyle \frac{d\beta_p}{dt} + \frac{j_{0p}^{\,2}}{\tau_{M}}\,\beta_p$ $\displaystyle = \frac{n^{2}\,[J_0(j_{0p}\,r_s/a)]^{\,2}}{\tau_A^{\,2}\,[J_1(j_{0p})]^{\,2}}\,
{\rm Im}({\mit\Delta\hat{\Psi}_s}\,\hat{\mit\Psi}_s^{\,\ast}).$ (3.179)

Here,

$\displaystyle \tau_{M} = \frac{a^{\,2}}{{\mit\Xi}_{\perp\,s}},$ (3.180)

is the momentum confinement time,

$\displaystyle \tau_A = \left(\frac{\mu_0\,\rho_s\,a^{\,2}}{B_z^{\,2}}\right)^{1/2}$ (3.181)

is the Alfvén time,

$\displaystyle \epsilon_s=\frac{r_s}{R_0}\ll 1$ (3.182)

is the inverse aspect-ratio of the rational surface, and

$\displaystyle {\mit\Delta\hat{\Psi}}_s$ $\displaystyle =\frac{{\mit\Delta\Psi}_s}{R_0\,B_z},$ (3.183)
$\displaystyle \hat{\mit\Psi}_s$ $\displaystyle =\frac{{\mit\Psi}_s}{R_0\,B_z}.$ (3.184)