The fact that two-particle Coulomb collisions are dominated by small-angle scattering events allows some simplification of
the Boltzmann collision operator in a plasma.
According to Equations (3.26) and (3.70), the Boltzmann collision operator for
two-body Coulomb collisions between species-
particles (with mass
and charge
) and species-
particles (with mass
and charge
) can be written
![$\displaystyle C_{ss'}= \int\!\!\int\!\!\int u_{ss'}\,\frac{d\sigma}{d{\mit\Omega}}\,(f_s'\,f_{s'}'-f_s\,f_{s'})\,
d^3{\bf v}_{s'}\,d{\mit\Omega},$](img731.png) |
(3.71) |
where
![$\displaystyle \frac{d\sigma}{d{\mit\Omega}} = \frac{1}{4}\left(\frac{e_s\,e_{s'}}{4\pi\,\epsilon_0\,\mu_{ss'}\,u_{ss'}^{2}}\right)^2 \frac{1}{\sin^4(\chi/2)}.$](img732.png) |
(3.72) |
Here,
is the relative velocity prior to a collision, and
, where
is the angle of deflection, and
is an azimuthal angle that determines the orientation of the plane in which a given two-body collision occurs. Recall that
,
,
, and
are short-hand for
,
,
, and
, respectively.
The species-
and species-
particle velocities prior to the collision are
and
, respectively, so that
. Let us write the corresponding
velocities after the collision as (see Section 3.3)
Here,
is assumed to be small, which implies that the angle of deflection is also small.
Expanding
to second order in
, we obtain
![$\displaystyle f_s({\bf v}_s') \simeq f_s({\bf v}_s) + \frac{\mu_{ss'}}{m_s}\,{\...
...}_{ss'}: \frac{\partial^2 f_s({\bf v}_s)}{\partial {\bf v}_s\partial{\bf v}_s}.$](img742.png) |
(3.75) |
Likewise, expanding
, we get
![$\displaystyle f_{s'}({\bf v}_{s'}') \simeq f_{s'}({\bf v}_s) - \frac{\mu_{ss'}}...
...ac{\partial^2 f_{s'}({\bf v}_{s'})}{\partial {\bf v}_{s'}\partial{\bf v}_{s'}}.$](img744.png) |
(3.76) |
Note that, in writing the previous two equations, we have neglected the
and
dependence of
, et cetera, for ease of notation.
Hence,
It follows that
![$\displaystyle C_{ss'}$](img748.png) |
![$\displaystyle \simeq \frac{1}{4}\left(\frac{e_s\,e_{s'}}{4\pi\,\epsilon_0\,\mu_...
...}_{ss'}\right]\frac{d^3{\bf v}_{s'}\,d{\mit\Omega}}{u_{ss'}^3\,\sin^4(\chi/2)},$](img749.png) |
|
|
|
(3.78) |
where
![$\displaystyle {\bf J}_{ss'} = \frac{\partial f_s}{\partial {\bf v}_s}\,\frac{f_{s'}}{m_s} -\frac{f_s}{m_{s'}}\,\frac{\partial f_{s'}}{\partial {\bf v}_{s'}}.$](img750.png) |
(3.79) |
Let
,
, and
be a right-handed set of mutually orthogonal unit vectors. Suppose that
.
Recall that
. Now, in an elastic collision for which the angle of deviation is
, we
require
,
, and
when
. In other words,
we need
,
, and
when
.
We deduce that
![$\displaystyle {\bf g}_{ss'} \simeq u_{ss'}\left[(\cos\chi-1)\,{\bf l} + \sin\chi\,\cos\phi\,{\bf m} +\sin\chi\,\sin\phi\,{\bf n}\right].$](img762.png) |
(3.80) |
Thus,
![$\displaystyle \int \frac{{\bf g}_{ss'}\,d{\mit\Omega}}{\sin^4(\chi/2)}$](img763.png) |
![$\displaystyle =\int_0^\pi\oint \frac{{\bf g}_{ss'}\,\sin\chi\,d\chi\,d\phi}{\si...
...}}{\sin^4(\chi/2)}=
-{\bf u}_{ss'} \int\frac{2\,d{\mit\Omega}}{\sin^2(\chi/2)},$](img764.png) |
(3.81) |
and
![$\displaystyle \int \frac{{\bf g}_{ss'}{\bf g}_{ss'}\,d{\mit\Omega}}{\sin^4(\chi/2)}$](img765.png) |
![$\displaystyle \simeq \frac{u_{ss'}^{2}}{2}\,({\bf m}{\bf m}+{\bf n}{\bf n})\int...
...u_{ss'}^2\,({\bf I}-{\bf l}{\bf l})\int\frac{2\,d{\mit\Omega}}{\sin^2(\chi/2)},$](img766.png) |
(3.82) |
where use has again been made of the fact that
is small.
Now,
![$\displaystyle \int \frac{2\,d{\mit\Omega}}{\sin^2(\chi/2)}=\int\frac{4\pi\,\sin...
...)}{\sin(\chi/2)}= 16\pi\,\ln\left(\frac{\chi_{\rm max}}{\chi_{\rm min}}\right),$](img767.png) |
(3.83) |
where
and
are the maximum and minimum angles of deflection, respectively.
However, according to Equation (3.64), small-angle two-body Coulomb collisions are characterized by
![$\displaystyle \chi\simeq \frac{e_s\,e_{s'}}{2\pi\,\epsilon_0\,\mu_{ss'}\,u_{ss'}^{2}\,b},$](img770.png) |
(3.84) |
where
is the impact parameter. Thus, we can write
![$\displaystyle \int \frac{2\,d{\mit\Omega}}{\sin^2(\chi/2)}=16\pi\,\ln{\mit\Lambda}_c,$](img771.png) |
(3.85) |
where the quantity
![$\displaystyle \ln {\mit\Lambda}_c = \ln\left(\frac{\chi_{\rm max}}{\chi_{\rm min}}\right)=\ln\left(\frac{b_{\rm max}}{b_{\rm min}}\right)$](img772.png) |
(3.86) |
is known as the Coulomb logarithm.
It follows from the previous analysis that
![$\displaystyle C_{ss'}$](img748.png) |
![$\displaystyle = \left(\frac{e_s\,e_{s'}}{4\pi\,\epsilon_0\,\mu_{ss'}}\right)^24...
...rac{\partial}{\partial {\bf v}_{s'}}\right){\bf J}_{ss'}\right]d^3{\bf v}_{s'}.$](img773.png) |
|
|
|
(3.87) |
If we define the tensor
![$\displaystyle {\bf w}_{ss'} = \frac{{\bf I}-{\bf l}{\bf l}}{u_{ss'}} = \frac{u_{ss'}^2\,{\bf I}-{\bf u}_{ss'}{\bf u}_{ss'}}{u_{ss'}^3}$](img774.png) |
(3.88) |
then it is readily seen that
Here,
,
, and
run from
to
, and correspond to Cartesian components. Moreover, we have made use of the Einstein summation convention
(that repeated indices are implicitly summed from
to
) (Riley 1974).
Hence, we deduce that
![$\displaystyle C_{ss'}$](img748.png) |
![$\displaystyle = \left(\frac{e_s\,e_{s'}}{4\pi\,\epsilon_0\,\mu_{ss'}}\right)^24...
...rac{\partial}{\partial {\bf v}_{s'}}\right){\bf J}_{ss'}\right]d^3{\bf v}_{s'}.$](img779.png) |
|
|
|
(3.90) |
Integration by parts yields
![$\displaystyle C_{ss'}$](img748.png) |
![$\displaystyle = \left(\frac{e_s\,e_{s'}}{4\pi\,\epsilon_0\,\mu_{ss'}}\right)^24...
...{\bf v}_{s'}}\cdot{\bf w}_{ss'}\right)\cdot{\bf J}_{ss'}\right]d^3{\bf v}_{s'}.$](img780.png) |
|
|
|
(3.91) |
However,
![$\displaystyle \frac{\partial}{\partial {\bf v}_{s'}}\cdot{\bf w}_{ss'} = - \fra...
...'}}\cdot{\bf w}_{ss'} = -\frac{\partial}{\partial {\bf v}_s}\cdot{\bf w}_{ss'},$](img781.png) |
(3.92) |
because
is a function of
. Thus, we obtain the so-called Landau collision operator (Landau 1936),
![$\displaystyle C_{ss'} = \frac{\gamma_{ss'}}{m_s}\,\frac{\partial}{\partial {\bf v}_s}\cdot\int {\bf w}_{ss'}\cdot{\bf J}_{ss'}\,d^3{\bf v}_{s'},$](img783.png) |
(3.93) |
where
![$\displaystyle \gamma_{ss'} = \left(\frac{e_s\,e_{s'}}{4\pi\,\epsilon_0}\right)^2\,2\pi\,\ln{\mit\Lambda}_c.$](img784.png) |
(3.94) |