Potential due to uniform ring
Consider a uniform ring of mass
, radius
, and negligible cross-sectional area, centered on the origin, and lying in the
-
plane.
Let us consider the gravitational potential
generated by such a ring in the
-
plane
(which corresponds to
). It follows, from Section 3.4, that for
,
![$\displaystyle {\mit\Phi}(r) = - \frac{G\,M}{a}\sum_{n=0,\infty} [P_n(0)]^2\left(\frac{a}{r}\right)^{n+1}.$](img514.png) |
(3.75) |
However,
,
,
,
,
,
,
,
, and
(Abramowitz and Stegun 1965b). Hence,
![$\displaystyle {\mit\Phi}(r) = - \frac{G\,M}{r}\left[1 + \frac{1}{4}\left(\frac{...
...rac{a}{r}\right)^6+ \frac{1225}{16384}\left(\frac{a}{r}\right)^8+\cdots\right].$](img524.png) |
(3.76) |
Likewise, for
,
![$\displaystyle {\mit\Phi}(r) = - \frac{G\,M}{a}\sum_{n=0,\infty} [P_n(0)]^2\left(\frac{r}{a}\right)^{n},$](img526.png) |
(3.77) |
giving
![$\displaystyle {\mit\Phi}(r) = - \frac{G\,M}{a}\left[1 + \frac{1}{4}\left(\frac{...
...rac{r}{a}\right)^6+ \frac{1225}{16384}\left(\frac{r}{a}\right)^8+\cdots\right].$](img527.png) |
(3.78) |