Power

It follows from Equation (1.193) that

$\displaystyle \frac{dK}{dt} =\sum_{i=1,N}m_i\,\frac{d{\bf v}_i}{dt}\cdot{\bf v}_i.$ (1.199)

Making use of Equation (1.181), we obtain

$\displaystyle \frac{dK}{dt} = \sum_{i=1,N} m_i\,\frac{d{\bf v}_i}{dt}\cdot$$\displaystyle \mbox{\boldmath$\omega$}$$\displaystyle \times {\bf r}_i =$   $\displaystyle \mbox{\boldmath$\omega$}$$\displaystyle \cdot\sum_{i=1,N} m_i\,{\bf r}_i\times \frac{d{\bf v}_i}{dt}.$ (1.200)

However, according to Equations (1.180) and (1.182),

$\displaystyle \frac{d{\bf L}}{dt} = \frac{d}{dt}\sum_{i=1,N} m_i\,{\bf r}_i\times{\bf v}_i= \sum_{i=1,N} m_i\,{\bf r}_i\times \frac{d{\bf v}_i}{dt}=$$\displaystyle \mbox{\boldmath$\tau$}$$\displaystyle .$ (1.201)

Hence, we obtain

$\displaystyle \frac{dK}{dt} =$   $\displaystyle \mbox{\boldmath$\tau$}$$\displaystyle \cdot$$\displaystyle \mbox{\boldmath$\omega$}$$\displaystyle .$ (1.202)

The right-hand side of the previous equation specified the work per unit time done on the system by the external torque.