Rotational Kinetic Energy

The instantaneous rotational kinetic energy of a rotating rigid body is written

$\displaystyle K = \frac{1}{2}\sum_{i=1,N} m_i\,{\bf v}_i\cdot{\bf v}_i.$ (1.193)

Making use of Equation (1.181), and some vector identities (see Section A.10), the kinetic energy takes the form

$\displaystyle K = \frac{1}{2}\sum_{i=1,N} m_i\,($$\displaystyle \mbox{\boldmath$\omega$}$$\displaystyle \times
{\bf r}_i)\cdot($$\displaystyle \mbox{\boldmath$\omega$}$$\displaystyle \times
{\bf r}_i) = \frac{1}{2}\,$$\displaystyle \mbox{\boldmath$\omega$}$$\displaystyle \cdot\!\! \sum_{i=1,N}
m_i\,{\bf r}_i\times$$\displaystyle \mbox{\boldmath$\omega$}$$\displaystyle \times {\bf r}_i).$ (1.194)

Hence, it follows from Equation (1.182) that

$\displaystyle K = \frac{1}{2}\,\,$   $\displaystyle \mbox{\boldmath$\omega$}$$\displaystyle \cdot {\bf L}.$ (1.195)

For the special case of an axisymmetric body, making use of Equation (1.190), we obtain

$\displaystyle K = \frac{1}{2}\,I_\perp\,(\omega_x^{\,2} + \omega_y^{\,2}) + \frac{1}{2}\,I_\parallel\,\omega_z^{\,2}.$ (1.196)

For the special case of a body rotating about a principal axis of rotation,

$\displaystyle K = \frac{1}{2}\,I\,\omega^2,$ (1.197)

where $I$ is the associated principal moment of inertia. More generally,

$\displaystyle K = \frac{1}{2}\,I_{xx}\,\omega_x^{\,2} + \frac{1}{2}\,I_{yy}\,\o...
...L_x^{\,2}}{2\,I_{xx}}+ \frac{L_y^{\,2}}{2\,I_{yy}}+\frac{L_z^{\,2}}{2\,I_{zz}},$ (1.198)

assuming that the Cartesian axes are parallel to the principal axes of rotation.