- ...Principa.
- An excellent discussion of the historical
development of Newtonian dynamics, as well as the physical and
philosophical assumptions which underpin this theory, is
given in The Discovery of Dynamics: A Study from a Machian Point of View of the Discovery and the Structure of Dynamical Theories, J.B. Barbour (Oxford University Press, Oxford UK, 2001).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... tensor.
- A tensor is the two-dimensional generalization of a vector. However, for present purposes, we can
simply think of a tensor as another name for a matrix.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... radius.
- M.G. Stewart, American Jou. Physics 73, 730 (2005).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... years.
- Note that this precession rate is about times greater than any of the planetary perihelion precession
rates discussed in Section 12.12.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... dynamics.
- For more information on lunar theory, see An Elementary Treatise on the Lunar Theory, H. Godfray (Macmillan & Co., 1853); An Introductory Treatise on the Lunar Theory, E.W. Brown (Cambridge University Press, 1896); Lectures on the Lunar Theory, J.C. Adams (Cambridge University Press, 1900).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... month,
- A
synodic month, which is days, is the mean period between successive new moons.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... scheme.
- W.H. Press, S.A. Teukolsky,
W.T. Vetterling, and B.P. Flannery, Numerical recipes in C: The
art of scientific computing, 2nd Edition (Cambridge University Press,
Cambridge UK, 1992), Section 16.1.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... respectively.
- G.L. Baker, Control of
the chaotic driven pendulum, Am. J. Phys. 63, 832 (1995).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... interactions.
- E.S. Albers
and B.W. Lee, Phys. Rep. 9C, 1 (1973).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... universe.
- P. Coles, and F. Lucchin, Cosmology: The origin and evolution
of cosmic structure, (J. Wiley & Sons, Chichester UK, 1995).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...fractal.
- B.B. Mandelbrot, The fractal geometry of nature, (W.H. Freeman,
New York NY, 1982).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
bifurcations.
- M.J. Feigenbaum, Quantitative universality for a
class of nonlinear transformations, J. Stat. Phys. 19, 25 (1978).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... bifurcations.
- M.J. Feigenbaum,
The universal metric properties of nonlinear transformations,
J. Stat. Phys. 21, 69 (1979).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
systems.
- P. Citanovic, Universality in chaos, (Adam Hilger,
Bristol UK, 1989).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... ground.
- E. Lorenz, Deterministic nonperiodic flow, J. Atmospheric
Science 20, 130 (1963).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... increased.
- N. Metropolis,
M.L. Stein, and P.R. Stein, On finite limit sets for transformations
on the unit interval, J. Combin. Theor. 15, 25 (1973).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... systems.
- R.H. Simoyi,
A. Wolf, and H.L. Swinney, One-dimensional dynamics in a multi-component
chemical reaction, Phys. Rev. Lett. 49, 245 (1982).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.