Next: Exercises
Up: Axisymmetric Incompressible Inviscid Flow
Previous: Flow Around a Submerged
Consider the conformal map
![$\displaystyle z+{\rm i}\,\varpi = c\,\cosh(\xi+{\rm i}\,\eta),$](img2795.png) |
(7.142) |
where
is real and positive. It follows that
Let
Thus, in the meridian plane, the curve
corresponds to the ellipse
![$\displaystyle \left(\frac{\varpi}{b}\right)^2+\left(\frac{z}{a}\right)^2=1.$](img2798.png) |
(7.147) |
We conclude that the surface
is an prolate spheroid (i.e., the three-dimensional surface obtained by
rotating an ellipse about a major axis) of major radius
and minor radius
. The constraints (7.87) and (7.90) yield
respectively. Setting
, and substituting into the governing equation, (7.86), we obtain
![$\displaystyle \frac{d}{d\xi}\left(\frac{1}{\sinh\xi}\,\frac{dF}{d\xi}\right) - \frac{2}{\sinh\xi}\,F=0.$](img2800.png) |
(7.150) |
The solution that satisfied the constraint (7.148) is
![$\displaystyle F(\xi)= -\frac{1}{2}\,B\left(\cosh\xi + \sinh^2\xi\,\ln\left[\tanh(\xi/2)\right]\right).$](img2801.png) |
(7.151) |
Let
be the eccentricity of the spheroid. Thus,
,
,
, and
. The constraint (7.149) yields
![$\displaystyle B = \frac{V\,a^{\,2}\,e^{\,2}}{e\,(1-e^{\,2})^{\,-1}+(1/2)\ln\left[(1-e)/(1+e)\right]}.$](img2803.png) |
(7.152) |
Hence,
![$\displaystyle \psi(\xi,\eta)= -\frac{1}{2}\,V\,b^{\,2}\left\{\frac{\cosh\xi + \...
...-1}+e^{\,-2}\,(1-e^{\,2})\,(1/2)\ln\left[(1-e)/(1+e)\right]}\right\}\sin^2\eta.$](img2804.png) |
(7.153) |
Finally, from Equation (7.84),
![$\displaystyle \frac{\partial\phi}{\partial\eta} = -\frac{1}{c\,\sinh\xi\,\sin\eta}\,\frac{\partial\psi}{\partial\xi},$](img2805.png) |
(7.154) |
which can be integrated to give
![$\displaystyle \phi(\xi,\eta) =-V\,a\left\{\frac{1 +\cosh\xi\,\ln\left[\tanh(\xi...
...ght]} {(1-e^{\,2})^{\,-1}+(1/2\,e)\ln\left[(1-e)/(1+e)\right]}\right\}\cos\eta.$](img2806.png) |
(7.155) |
It is easily demonstrated that
![$\displaystyle \psi(\xi_0,\eta)= -\frac{1}{2}\,V\,b^{\,2}\,\sin^2\eta,$](img2807.png) |
(7.156) |
and
![$\displaystyle \phi(\xi_0,\eta)= -V\,a\left\{\frac{1 +(1/2\,e)\ln\left[(1-e)/(1+...
...ght]} {(1-e^{\,2})^{\,-1}+(1/2\,e)\ln\left[(1-e)/(1+e)\right]}\right\}\cos\eta.$](img2808.png) |
(7.157) |
Thus,
It follows that the added mass of the spheroid is
![$\displaystyle m_{\rm added} = \frac{4}{3}\,\pi\,\rho\,a\,b^{\,2}\,G(e),$](img2812.png) |
(7.159) |
where
![$\displaystyle G(e)=-\left\{\frac{1 +(1/2\,e)\ln\left[(1-e)/(1+e)\right]} {(1-e^{\,2})^{\,-1}+(1/2\,e)\ln\left[(1-e)/(1+e)\right]}\right\}.$](img2813.png) |
(7.160) |
is a monotonic function that takes the value
when
, and asymptotes to
as
.
Next: Exercises
Up: Axisymmetric Incompressible Inviscid Flow
Previous: Flow Around a Submerged
Richard Fitzpatrick
2016-01-22