// CrankNicholson1D.cpp // Function to evolve diffusion equation in 1-d: // dT / dt = D d^2 T / dx^2 for xl <= x <= xh // alpha_l T + beta_l dT/dx = gamma_l at x=xl // alpha_h T + beta_h dT/dx = gamma_h at x=xh // Array T assumed to be of extent N+2. // Now, ith element of array corresponds to // x_i = xl + i * dx i=0,N+1 // Here, dx = (xh - xl) / (N+1) is grid spacing. // Function evolves T by single time-step. // C = D dt / dx^2, where dt is time-step. // Uses Crank-Nicholson implicit scheme. #include <blitz/array.h> using namespace blitz; void Tridiagonal (Array<double,1> a, Array<double,1> b, Array<double,1> c, Array<double,1> w, Array<double,1>& u); void CrankNicholson1D (Array<double,1>& T, double alpha_l, double beta_l, double gamma_l, double alpha_h, double beta_h, double gamma_h, double dx, double C) { // Find N. Declare local arrays. int N = T.extent(0) - 2; Array<double,1> a(N+2), b(N+2), c(N+2), w(N+2); // Initialize tridiagonal matrix for (int i = 2; i <= N; i++) a(i) = - 0.5 * C; for (int i = 1; i <= N; i++) b(i) = 1. + C; b(1) += 0.5 * C * beta_l / (alpha_l * dx - beta_l); b(N) -= 0.5 * C * beta_h / (alpha_h * dx + beta_h); for (int i = 1; i <= N-1; i++) c(i) = - 0.5 * C; // Initialize right-hand side vector for (int i = 1; i <= N; i++) w(i) = T(i) + 0.5 * C * (T(i-1) - 2. * T(i) + T(i+1)); w(1) += 0.5 * C * gamma_l * dx / (alpha_l * dx - beta_l); w(N) += 0.5 * C * gamma_h * dx / (alpha_h * dx + beta_h); // Invert tridiagonal matrix equation Tridiagonal (a, b, c, w, T); // Calculate i=0 and i=N+1 values T(0) = (gamma_l * dx - beta_l * T(1)) / (alpha_l * dx - beta_l); T(N+1) = (gamma_h * dx + beta_h * T(N)) / (alpha_h * dx + beta_h); }