Diffraction from Circular Aperture

Consider the diffraction pattern of a circular aperture of radius $a$ whose center lies at $x=y=0$. (See Section 10.10.) We expect the pattern to be rotationally symmetric about the $z$-axis. In other words, we expect the intensity of the illumination on the projection screen to be only a function of the radial coordinate $r'=(x'^{\,2}+y'^{\,2})^{1/2}$. It is helpful to redefine the dimensionless parameters $u$ and $v$ as follows:

$\displaystyle u$ $\displaystyle = \frac{2\pi}{\lambda}\,\frac{a}{R}\,a,$ (10.139)
$\displaystyle v$ $\displaystyle = \frac{2\pi}{\lambda}\,\frac{a}{R}\,r'.$ (10.140)

Thus, $u$ now parameterizes the aperture radius, whereas $v$ is a normalized radial coordinate on the projection screen. Note, from Equation (10.96), that the far-field limit corresponds to $u\lesssim 1$, whereas the near-field limit corresponds to $u\gg 1$. Furthermore, a point on the projection screen lies in the geometric (i.e., as predicted by geometric optics) lit part of the screen if $v<u$, and vice versa. Finally, the aperture function takes the form

\begin{displaymath}f(v) = \left\{
\begin{array}{lll}
1&\mbox{\hspace{0.5cm}}& \mbox{$v<u$\ }\\ [0.5ex]
0&&\mbox{otherwise}\end{array}\right..\end{displaymath} (10.141)

When expressed in terms of the new variables, Equations (10.103) and (10.104) transform to give

$\displaystyle f_c(u,v)$ $\displaystyle = u\int_0^1\oint \cos\left(\frac{v^{\,2}}{2\,u} + \frac{u\,z^{\,2}}{2}-v\,z\,\cos\theta\right)z\,dz\,\frac{d\theta}{2\pi},$ (10.142)
$\displaystyle f_s(u,v)$ $\displaystyle = u\int_0^1\oint \sin\left(\frac{v^{\,2}}{2\,u} + \frac{u\,z^{\,2}}{2}-v\,z\,\cos\theta\right)z\,dz\,\frac{d\theta}{2\pi},$ (10.143)

where $z=(x^{\,2}+y^{\,2})^{1/2}/a$. Now, (Abramowitz and Stegun 1965)

$\displaystyle \oint \cos(v\,z\,\cos\theta)\,\frac{d\theta}{2\pi}$ $\displaystyle = J_0(v\,z),$ (10.144)
$\displaystyle \oint \sin(v\,z\,\cos\theta)\,\frac{d\theta}{2\pi}$ $\displaystyle =0,$ (10.145)

where (ibid.)

$\displaystyle J_n(z)=\frac{1}{\pi}\int_0^\pi \cos(z\,\sin\theta-n\,\theta)\,d\theta$ (10.146)

denotes a Bessel function of degree $n$. Hence, making use of some trigonometric identities (see Appendix B), Equations (10.142) and (10.143) reduce to

$\displaystyle f_c(u,v)$ $\displaystyle = \cos\left(\frac{v^{\,2}}{2\,u}\right)\,{\cal C}(u,v) -\sin\left(\frac{v^{\,2}}{2\,v}\right){\cal S}(u,v),$ (10.147)
$\displaystyle f_s(u,v)$ $\displaystyle = \sin\left(\frac{v^{\,2}}{2\,u}\right)\,{\cal C}(u,v) + \cos\left(\frac{v^{\,2}}{2\,v}\right){\cal S}(u,v),$ (10.148)

where

$\displaystyle {\cal C}(u,v)$ $\displaystyle = u\int_0^1 \cos\left(\frac{u\,z^{\,2}}{2}\right)J_0(v\,z)\,z\,dz,$ (10.149)
$\displaystyle {\cal S}(u,v)$ $\displaystyle = u\int_0^1 \sin\left(\frac{u\,z^{\,2}}{2}\right)J_0(v\,z)\,z\,dz.$ (10.150)

It is helpful, at this stage, to introduce the so-called Lommel functions (of two arguments) (Watson 1962)

$\displaystyle U_n(u,v)$ $\displaystyle =\sum_{s=0,\infty} (-1)^s\left(\frac{u}{v}\right)^{n+2s}J_{n+2s}(v),$ (10.151)
$\displaystyle V_n(u,v)$ $\displaystyle =\sum_{s=0,\infty} (-1)^s\left(\frac{v}{u}\right)^{n+2s}J_{n+2s}(v).$ (10.152)

In the geometric lit region, $v<u$, the integrals ${\cal C}(u,v)$ and ${\cal S}(u,v)$ are conveniently expanded in terms of the convergent $V_n$ Lommel functions (Born and Wolf 1980)

$\displaystyle {\cal C}(u,v)$ $\displaystyle =\sin\left(\frac{v^{\,2}}{2\,u}\right)+\sin\left(\frac{u}{2}\right)V_0(u,v)-\cos\left(\frac{u}{2}\right)V_1(u,v),$ (10.153)
$\displaystyle {\cal S}(u,v)$ $\displaystyle =\cos\left(\frac{v^{\,2}}{2\,u}\right)-\cos\left(\frac{u}{2}\right)V_0(u,v)-\sin\left(\frac{u}{2}\right)V_1(u,v).$ (10.154)

(See Exercise 22.) Likewise, in the geometric shadow region, $v>u$, the integrals can be expended in term of the convergent $U_n$ Lommel functions (Born and Wolf 1980)

$\displaystyle {\cal C}(u,v)$ $\displaystyle =\cos\left(\frac{u}{2}\right)U_1(u,v)+\sin\left(\frac{u}{2}\right)U_2(u,v),$ (10.155)
$\displaystyle {\cal S}(u,v)$ $\displaystyle =\sin\left(\frac{u}{2}\right)U_1(u,v)-\cos\left(\frac{u}{2}\right)U_2(u,v).$ (10.156)

(See Exercise 22.) It follows (with the aid of some trigonometric identities) that

$\displaystyle f_c(u,v)$ $\displaystyle = \sin\left(\frac{u^{\,2}+v^{\,2}}{2\,u}\right)V_0(u,v)- \cos\left(\frac{u^{\,2}+v^{\,2}}{2\,u}\right)V_1(u,v),$ (10.157)
$\displaystyle f_s(u,v)$ $\displaystyle =1- \cos\left(\frac{u^{\,2}+v^{\,2}}{2\,u}\right)V_0(u,v)- \sin\left(\frac{u^{\,2}+v^{\,2}}{2\,u}\right)V_1(u,v)$ (10.158)

when $v<u$, and

$\displaystyle f_c(u,v)$ $\displaystyle = \cos\left(\frac{u^{\,2}+v^{\,2}}{2\,u}\right)U_1(u,v)+ \sin\left(\frac{u^{\,2}+v^{\,2}}{2\,u}\right)U_2(u,v),$ (10.159)
$\displaystyle f_s(u,v)$ $\displaystyle =\sin\left(\frac{u^{\,2}+v^{\,2}}{2\,u}\right)U_1(u,v)- \cos\left(\frac{u^{\,2}+v^{\,2}}{2\,u}\right)U_2(u,v)$ (10.160)

when $v>u$.

Figure 10.20: Far/near-field diffraction pattern of a circular aperture. The left and right panels correspond to $u=1$ and $u=50$, respectively. The thick black line indicates the physical extent of the aperture.
\includegraphics[width=1\textwidth]{Chapter10/fig10_20.eps}

Finally, making use of Equation (10.110), the previous four equations imply that the illumination intensity on the projection screen can be written

$\displaystyle \frac{{\cal I}(v)}{{\cal I}_0}= \left[V_0(u,v)-\cos\left(\frac{u^...
...,2}
+ \left[V_1(u,v)-\sin\left(\frac{u^{\,2}+v^{\,2}}{2\,u}\right)\right]^{\,2}$ (10.161)

when $v<u$, and

$\displaystyle \frac{{\cal I}(v)}{{\cal I}_0}= \left[U_1^{\,2}(u,v)+U_2^{\,2}(u,v)\right]$ (10.162)

when $v>u$. Here, ${\cal I}_0$ is the intensity of the light illuminating the aperture from behind.

Figure 10.20 shows a typical far-field (i.e., $u\lesssim 1$) and near-field (i.e., $u\gg 1$) diffraction pattern of a circular aperture, as determined from the previous analysis. It can be seen that the far-field diffraction pattern is similar in form to that predicted by the simplified Fourier analysis of Section 10.9. On the other hand, the near-field diffraction pattern is quite different. In fact, the near-field diffraction pattern is fairly similar in form to the geometric image of the aperture, apart from the presence of fringes within the image.