Next: Potential energy
Up: Conservation of energy
Previous: Work
Suppose that a nonuniform forcefield
acts upon
an object which moves along a curved trajectory, labeled path 1, from point to
point . See Fig. 40. As we have seen, the work performed by the forcefield
on the object can be written as a lineintegral along this trajectory:

(148) 
Suppose that the same object moves along a different trajectory, labeled path
2, between the same two points. In this case, the work performed by the forcefield is

(149) 
Basically, there are two possibilities. Firstly, the lineintegrals (148) and
(149) might depend on the end points, and , but not on the path
taken between them, in which case . Secondly, the lineintegrals (148) and
(149) might depend both on the end points, and , and the path
taken between them, in which case (in general). The first possibility
corresponds to what physicists term a conservative forcefield, whereas the
second possibility corresponds to a nonconservative forcefield.
Figure 40:
Two alternative paths between points and

What is the physical distinction between a conservative and a nonconservative
forcefield? Well, the easiest way of answering this question is to
slightly modify the problem discussed above. Suppose, now, that the object moves from
point to point along path 1, and then from point back to point
along path 2. What is the total work done on the object by the forcefield as
it executes this closed circuit? Incidentally, one fact which should be clear from the
definition of a lineintegral is that if we simply reverse the path of a given
integral then the value of that integral picks up a minus sign: in other
words,

(150) 
where it is understood that both the above integrals are taken in opposite directions
along the same path. Recall that conventional 1dimensional integrals
obey an analogous rule: i.e., if we swap the limits of
integration then the integral picks up a minus sign.
It follows that the total work done on the object as it executes
the circuit is simply

(151) 
where and are defined in Eqs. (148) and (149), respectively.
There is a minus sign in front of because we are moving from point to point
, instead of the other way around. For the case of a conservative field, we have
. Hence, we conclude that

(152) 
In other words, the net work done by a conservative field on an object taken around
a closed loop is zero. This is just another way of saying that a conservative
field stores energy without loss: i.e., if an object gives up a
certain amount of energy to a conservative field in traveling from point to point , then the
field returns this energy to the objectwithout losswhen it travels back
to point . For the case of a nonconservative field, . Hence, we
conclude that

(153) 
In other words, the net work done by a nonconservative field on an object taken around
a closed loop is nonzero. In practice, the net work is invariably negative.
This is just another way of saying that a nonconservative field dissipates energy:
i.e., if an object gives up a
certain amount of energy to a nonconservative field in traveling from point to point , then the
field only returns part, or, perhaps, none, of this energy to the object when it travels back
to point . The remainder is usually dissipated as heat.
What are typical examples of conservative and nonconservative fields? Well, a gravitational
field is probably the most wellknown example of a conservative field (see later).
A typical example of a nonconservative field might consist of an
object moving over a rough horizontal surface. Suppose, for the sake of simplicity,
that the object executes a closed circuit on the surface which is made
up entirely of straightline segments, as shown in Fig. 41.
Let
represent the vector displacement of the th leg
of this circuit. Suppose that the frictional force acting on the object as it executes this
leg is . One thing that we know about a frictional force
is that it is always directed in the opposite direction to the instantaneous
direction of motion of the object upon which it acts. Hence,
. It follows that
. Thus, the net work
performed by the frictional force on the object, as it executes the circuit, is
given by

(154) 
The fact that the net work is negative indicates that the frictional force continually
drains energy from the object as it moves over the surface. This energy
is actually dissipated as heat (we all know that if we rub two rough surfaces
together, sufficiently vigorously, then they will eventually heat up: this is
how mankind first made fire) and is, therefore, lost to the
system. (Generally speaking, the laws of thermodynamics forbid energy which has been
converted into heat from being converted back to its original form.)
Hence, friction is an example of a nonconservative force, because it dissipates
energy rather than storing it.
Figure 41:
Closed circuit over a rough horizontal surface

Next: Potential energy
Up: Conservation of energy
Previous: Work
Richard Fitzpatrick
20060202