next up previous
Next: Spin Angular Momentum Up: Orbital Angular Momentum Previous: Energy Levels of Hydrogen

Exercises

  1. Demonstrate directly from the fundamental commutation relations for angular momentum, (4.11), that (a) $ [L^2, L_z] = 0$ , (b) $ [L^\pm, L_z] = \mp \,\hbar\,L^\pm$ , and (c) $ [L^+,L^-] = 2\,\hbar\,L_z$ .

  2. Demonstrate from Equations (4.74)-(4.79) that

    $\displaystyle L_x$ $\displaystyle = {\rm i}\,\hbar\,\left(\sin\varphi\, \frac{\partial}{\partial \theta} + \cot\theta \cos\varphi\,\frac{\partial}{\partial \varphi}\right),$    
    $\displaystyle L_y$ $\displaystyle = -{\rm i} \,\hbar\,\left(\cos\varphi\, \frac{\partial}{\partial\theta} -\cot\theta \sin\varphi \,\frac{\partial}{\partial \varphi}\right),$    
    $\displaystyle L_z$ $\displaystyle = -{\rm i}\,\hbar\,\frac{\partial}{\partial\varphi},$    

    where $ \theta$ , $ \varphi$ are conventional spherical angles. In addition, show that

    $\displaystyle L^\pm$ $\displaystyle = \pm \hbar\,\exp(\pm{\rm i}\,\varphi)\left(\frac{\partial}{\partial\theta} \pm{\rm i} \,\cot\theta\,\frac{\partial}{\partial\varphi}\right),$    
    $\displaystyle L^2$ $\displaystyle = - \hbar^{\,2}\left( \frac{1}{\sin\theta}\frac{\partial}{\partia...
...} + \frac{1}{\sin^2\theta}\frac{\partial^{\,2}} {\partial\varphi^{\,2}}\right).$    

  3. A system is in the state $ \psi(\theta,\varphi)=Y_{l\,m}(\theta,\varphi)$ . Evaluate $ \langle L_x\rangle$ , $ \langle L_y\rangle$ , $ \langle L_x^{\,2}\rangle$ , and $ \langle L_y^{\,2}\rangle$ .

  4. Derive Equations (4.108) and (4.109) from Equation (4.107).

  5. Find the eigenvalues and eigenfunctions (in terms of the angles $ \theta$ and $ \varphi$ ) of $ L_x$ . Express the $ l=1$ eigenfunctions in terms of the spherical harmonics.

  6. Consider a beam of particles with $ l=1$ . A measurement of $ L_x$ yields the result $ \hbar$ . What values will be obtained by a subsequent measurement of $ L_z$ , and with what probabilities? Repeat the calculation for the cases in which the measurement of $ L_x$ yields the results 0 and $ -\hbar$ .

  7. The Hamiltonian for an axially symmetric rotator is given by

    $\displaystyle H = \frac{L_x^{\,2}+L_y^{\,2}}{2\,I_\perp} + \frac{L_z^{\,2}}{2\,I_\parallel},
$

    where $ I_\parallel$ and $ I_\perp$ are the moments of inertia about the $ z$ -axis (which corresponds to the symmetry axis), and about an axis lying in the $ x$ -$ y$ plane, respectively. What are the eigenvalues of $ H$ ? [53]

  8. The expectation value of $ f({\bf x},{\bf p})$ in any stationary state is a constant. Calculate

    $\displaystyle 0= \frac{d}{dt}\,(\langle{\bf x}\cdot{\bf p}\rangle) = \frac{{\rm i}}{\hbar}\,\langle[H, {\bf x}\cdot{\bf p}]\rangle
$

    for a Hamiltonian of the form

    $\displaystyle H = \frac{p^{\,2}}{2\,m} + V(r).
$

    Hence, show that

    $\displaystyle \left\langle\frac{p^{\,2}}{2\,m}\right\rangle = \frac{1}{2}\left\langle r\,\frac{dV}{dr}\right\rangle
$

    in a stationary state. This is another form of the Virial theorem. (See Exercise 9.) [53]

  9. Use the Virial theorem of the previous exercise to prove that

    $\displaystyle \left\langle \frac{1}{r}\right\rangle = \frac{1}{n^{\,2}\,a_0}
$

    for an energy eigenstate of the hydrogen atom whose principal quantum number is $ n$ .

  10. Suppose that a particle's Hamiltonian is

    $\displaystyle H = \frac{p^{\,2}}{2\,m} + V({\bf x}).
$

    Show that $ [{\bf L},p^{\,2}] = {\bf0}$ and $ [{\bf L},V({\bf x})]=-{\rm i}\,\hbar\,{\bf x}\times \nabla V$ . [Hint: Use the Schrödinger representation.] Hence, deduce that

    $\displaystyle \frac{d\langle {\bf L}\rangle}{dt} = -\langle {\bf x}\times \nabla V\rangle.
$

    [Hint: Use the Heisenberg picture.] Demonstrate that if $ V=V(r)$ , where $ r=\vert{\bf x}\vert$ , then

    $\displaystyle \frac{d\langle {\bf L}\rangle}{dt} ={\bf0}.
$

  11. Let

    $\displaystyle I_n = \int_0^\infty y^{\,n}\,e^{-y},
$

    where $ n$ is a non-negative integer. Show that

    $\displaystyle I_n = n!.
$

  12. Demonstrate that the first few properly normalized radial wavefunctions of the hydrogen atom take the form:
    1. $\displaystyle R_{1\,0}(r) = \frac{2}{a_0^{\,3/2}}\,\exp\left(-\frac{r}{a_0}\right).
$

    2. $\displaystyle R_{2\,0}(r)= \frac{2}{(2\,a_0)^{3/2}}\left(1-\frac{r}{2\,a_0}\right)\exp\left(-\frac{r}{2\,a_0}\right).
$

    3. $\displaystyle R_{2\,1}(r)= \frac{1}{\sqrt{3}\,(2\,a_0)^{3/2}}\,\frac{r}{a_0}\,\exp\left(-\frac{r}{2\,a_0}\right).
$

    4. $\displaystyle R_{3\,0}(r)= \frac{2}{(3\,a_0)^{3/2}}\left(1-\frac{2\,r}{3\,a_0}+\frac{2\,r^{\,2}}{27\,a_0^{\,2}}\right)\exp\left(-\frac{r}{3\,a_0}\right).
$

    5. $\displaystyle R_{3\,1}(r)= \frac{4\sqrt{2}}{9\,(3\,a_0)^{3/2}}\,\frac{r}{a_0}\left(1-\frac{r}{6\,a_0}\right)\exp\left(-\frac{r}{3\,a_0}\right).
$

    6. $\displaystyle R_{3\,2}(r)= \frac{2\sqrt{2}}{27\sqrt{5}\,(3\,a_0)^{3/2}}\left(\frac{r}{a_0}\right)^2\exp\left(-\frac{r}{3\,a_0}\right).
$

  13. Demonstrate that

    $\displaystyle \langle r^{\,k}\rangle = \frac{(2+k)!}{2^{1+k}}\,a_0^{\,k}
$

    for the hydrogen ground state. In addition, show that

    $\displaystyle \langle x^{\,2}\rangle =\langle y^{\,2}\rangle =\langle z^{\,2}\rangle = a_0^{\,2}.
$

  14. Show that the most probable value of $ r$ in the hydrogen ground state is $ a_0$ .

  15. Demonstrate that

    $\displaystyle \langle 2,0,0\vert\,z\,\vert 2,1,0\rangle = -3\,a_0,
$

    where $ \vert n,l,m\rangle$ denotes a properly normalized energy eigenket of the hydrogen atom corresponding to the standard quantum numbers $ n$ , $ l$ , and $ m$ .

  16. Let $ \langle r^{\,k}\rangle$ denote the expectation value of $ r^{\,k}$ for an energy eigenstate of the hydrogen atom characterized by the standard quantum numbers $ n$ , $ l$ , and $ m$ .
    1. Demonstrate that

      $\displaystyle \langle r^{\,k}\rangle = (n\,a_0)^{\,k+3}\,J_k,
$

      where

      $\displaystyle J_k = \int_0^\infty dx\,x^{\,k}\,[u(x)]^{\,2},
$

      and $ u(x)$ is a well-behaved solution of the differential equation

      $\displaystyle u'' = \left[\frac{l\,(l+1)}{x^{\,2}}-\frac{2\,n}{x}+1\right] u.
$

    2. Integrating by parts, show that

      $\displaystyle \int_0^\infty dx\, x^{\,k}\,u\,u' =-\frac{k}{2}\,J_{k-1},
$

      and

      $\displaystyle \int_0^\infty dx\,x^{\,k}\,(u')^{\,2} = -\frac{2}{k+1}\int_0^\infty dx\,x^{\,k+1}\,u'\,u'',
$

      as well as

      $\displaystyle \int_0^\infty dx\,x^{\,k}\,u\,u'' = \frac{k\,(k-1)}{2}\,J_{k-2} +\frac{2}{k+1}\,\int_0^\infty dx\,x^{\,k+1}\,u'\,u''.
$

    3. Demonstrate from the governing differential equation for $ u(x)$ that

      $\displaystyle \int_0^\infty dx\,x^{\,k}\,u\,u'' = l\,(l+1)\,J_{k-2}-2\,n\,J_{k-1}+J_k.
$

    4. Combine the final result of part (b) with the governing differential equation to prove that

      $\displaystyle \int_0^\infty dx\,x^{\,k}\,u\,u'' =-\frac{l\,(l+1)\,(k-1)}{k+1}\,J_{k-2} +\frac{2\,n\,k}{k+1}\,J_{k-1}
-J_k +\frac{k\,(k-1)}{2}\,J_{k-2}.
$

    5. Combine the results of parts (c) and (d) to show that

      $\displaystyle \frac{k}{4}\,[(2\,l+1)^2-k^{\,2}]\,J_{k-2} -n\,(2\,k+1)\,J_{k-1}+(k+1)\,J_k = 0.
$

      Hence, derive Kramers' relation:

      $\displaystyle \frac{k\,a_0^{\,2}}{4}\,[(2\,l+1)^2-k^{\,2}]\,\langle r^{\,k-2}\r...
...\,\langle r^{\,k-1}\rangle
+\frac{(k+1)}{n^{\,2}}\,\langle r^{\,k}\rangle = 0.
$

    6. Use Kramers' relation to prove that

      $\displaystyle \left\langle \frac{1}{r}\right\rangle$ $\displaystyle = \frac{1}{n^{\,2}\,a_0},$    
      $\displaystyle \langle r\rangle$ $\displaystyle = \frac{a_0}{2}\,[3\,n^{\,2}-l\,(l+1)],$    
      $\displaystyle \langle r^{\,2}\rangle$ $\displaystyle = \frac{a_0^{\,2}\,n^{\,2}}{2}\,[5\,n^{\,2}+1-3\,l\,(l+1)].$    

  17. Let $ R_{nl}(r)= v_{nl}(r/a_0)/(r/a_0)$ , where $ R_{nl}(r)$ is a properly normalized radial hydrogen wavefunction corresponding to the conventional quantum numbers $ n$ and $ l$ , and $ a_0$ is the Bohr radius.
    1. Demonstrate that

      $\displaystyle \frac{d^{\,2}v_{nl}}{dy^{\,2}} = \left[\frac{l\,(l+1)}{y^{\,2}} -\frac{2}{y} + \frac{1}{n^{\,2}}\right]v_{nl}.
$

    2. Show that $ v_{nl}\sim y^{\,1+l}$ in the limit $ y\rightarrow 0$ .
    3. Demonstrate that

      $\displaystyle \left(\frac{1}{n^{\,2}}-\frac{1}{m^{\,2}}\right)\int_0^\infty dy\,v_{nl}(y)\,v_{ml}(y) = 0.
$

    4. Hence, deduce that

      $\displaystyle \int_0^\infty dr\, r^{\,2}\,R_{nl}(r)\,R_{ml}(r)=0
$

      for $ n\neq m$ .


next up previous
Next: Spin Angular Momentum Up: Orbital Angular Momentum Previous: Energy Levels of Hydrogen
Richard Fitzpatrick 2016-01-22