next up previous
Next: Free Electron Motion Up: Relativistic Electron Theory Previous: Dirac Equation

Lorentz Invariance of Dirac Equation

Consider two inertial frames, $ S$ and $ S'$ . Let the $ x^{\,\mu}$ and $ x^{\,\mu'}$ be the space-time coordinates of a given event in each frame, respectively. These coordinates are related via a Lorentz transformation, which takes the general form

$\displaystyle x^{\,\mu'} = a^{\,\mu}_{~\nu}\,x^{\,\nu},$ (11.52)

where the $ a^{\,\mu}_{~\nu}$ are real numerical coefficients that are independent of the $ x^{\,\mu}$ . We also have

$\displaystyle x_{\mu'} = a_{\mu}^{~\nu}\,x_{\,\nu}.$ (11.53)

Now, because [see Equation (11.5)]

$\displaystyle x^{\,\mu'}\,x_{\mu'} = x^{\,\mu}\,x_\mu,$ (11.54)

it follows that

$\displaystyle a^{\,\mu}_{~\nu}\,a_\mu^{~\lambda} = g_\nu^{~\lambda}.$ (11.55)

Moreover, it is easily shown that

$\displaystyle x^{\,\mu}$ $\displaystyle = a_\nu^{~\mu}\,x^{\nu'},$ (11.56)
$\displaystyle x_\mu$ $\displaystyle = a^\nu_{~\mu}\,x_{\nu'}.$ (11.57)

By definition, a 4-vector, $ p^{\,\mu}$ , has analogous transformation properties to the $ x^{\,\mu}$ . Thus,

$\displaystyle p^{\,\mu'}$ $\displaystyle = a^{\,\mu}_{~\nu}\,p^\nu,$ (11.58)
$\displaystyle p^{\,\mu}$ $\displaystyle = a_\nu^{~\mu}\,p^{\nu'},$ (11.59)

et cetera.

In frame $ S$ , the Dirac equation is written

$\displaystyle \left[\gamma^{\,\mu}\left(p_\mu- \frac{e}{c}\,{\mit\Phi}_\mu\right)-m_e\,c\right]\psi = 0.$ (11.60)

Let $ \psi'$ be the wavefunction in frame $ S'$ . Suppose that

$\displaystyle \psi' = A\,\psi,$ (11.61)

where $ A$ is a $ 4\times 4$ transformation matrix that is independent of the $ x^{\,\mu}$ . (Hence, $ A$ commutes with the $ p_\mu$ and the $ {\mit\Phi}_\mu$ .) Multiplying Equation (11.60) by $ A$ , we obtain

$\displaystyle \left[A\,\gamma^{\,\mu}\,A^{-1}\left(p_\mu- \frac{e}{c}\,{\mit\Phi}_\mu\right)-m_e\,c\right]\psi' = 0.$ (11.62)

Hence, given that the $ p_\mu$ and $ {\mit\Phi}_\mu$ are the covariant components of 4-vectors, we obtain

$\displaystyle \left[A\,\gamma^{\,\mu}\,A^{-1}\,a^{\nu}_{~\mu}\left(p_{\nu'}- \frac{e}{c}\,{\mit\Phi}_{\nu'}\right)-m_e\,c\right]\psi' = 0.$ (11.63)

Suppose that

$\displaystyle A\,\gamma^{\,\mu}\,A^{-1}\,a^{\nu}_{~\mu} = \gamma^{\,\nu},$ (11.64)

which is equivalent to

$\displaystyle A^{-1}\,\gamma^{\,\nu}\,A = a^{\nu}_{~\mu}\,\gamma^{\,\mu}.$ (11.65)

Here, we have assumed that the $ a^{\nu}_{~\mu}$ commute with $ A$ and the $ \gamma^{\,\mu}$ (because they are just numbers). If Equation (11.64) holds then Equation (11.63) becomes

$\displaystyle \left[\gamma^{\,\mu}\left(p_{\mu'}- \frac{e}{c}\,{\mit\Phi}_{\mu'}\right)-m_e\,c\right]\psi' = 0.$ (11.66)

A comparison of this equation with Equation (11.60) reveals that the Dirac equation takes the same form in frames $ S$ and $ S'$ . In other words, the Dirac equation is Lorentz invariant. Incidentally, it is clear from Equations (11.60) and (11.66) that the $ \gamma^{\,\mu}$ matrices are the same in all inertial frames.

It remains to find a transformation matrix $ A$ that satisfies Equation (11.65). Consider an infinitesimal Lorentz transformation, for which

$\displaystyle a_{~\mu}^{\nu} = g_{~\mu}^{\nu} + \delta\omega_{~\mu}^{\nu},$ (11.67)

where the $ \delta\omega_{~\mu}^{\nu}$ are real numerical coefficients that are independent of the $ x^{\,\mu}$ , and are also small compared to unity. To first order in small quantities, Equation (11.55) yields

$\displaystyle \delta\omega^{\,\mu\,\nu} + \delta\omega^{\,\nu\,\mu} = 0.$ (11.68)

Each of the six independent non-vanishing $ \delta\omega^{\,\mu\,\nu}$ generates a particular infinitesimal Lorentz transformation. For instance,

$\displaystyle \delta\omega^{\,01} =-\delta\omega^{\,10}= \delta \beta$ (11.69)

for a transformation to a coordinate system moving with a velocity $ c\,\delta\beta$ along the $ x^{\,1}$ -direction. Furthermore,

$\displaystyle \delta\omega^{\,21} = -\delta\omega^{\,12} = \delta\varphi$ (11.70)

for a rotation through an angle $ \delta\varphi$ about the $ x^{\,3}$ -axis, and so on.

Let us write

$\displaystyle A = 1 - \frac{{\rm i}}{4}\,\sigma_{\mu\,\nu}\,\delta\omega^{\,\mu\,\nu},$ (11.71)

where the $ \sigma_{\mu\,\nu}$ are $ {\cal O}(1)$ $ 4\times 4$ matrices. To first order in small quantities,

$\displaystyle A^{-1} = 1 + \frac{{\rm i}}{4}\,\sigma_{\mu\,\nu}\,\delta\omega^{\,\mu\,\nu}.$ (11.72)

Moreover, it follows from Equation (11.68) that

$\displaystyle \sigma_{\mu\,\nu} = -\sigma_{\nu\,\mu}.$ (11.73)

To first order in small quantities, Equations (11.65), (11.67), (11.71), and (11.72) yield

$\displaystyle \delta\omega^{\nu}_{~\beta}\,\gamma^{\,\beta} = -\frac{\rm i}{4}\...
...{\,\nu}\,\sigma_{\alpha\,\beta}- \sigma_{\alpha\,\beta}\,\gamma^{\,\nu}\right).$ (11.74)

Hence, making use of the symmetry property (11.68), we obtain

$\displaystyle \delta\omega^{\,\alpha\,\beta}\,(g^\nu_{~\alpha}\,\gamma_\beta -g...
...\gamma^{\,\nu}\,\sigma_{\alpha\,\beta}-\sigma_{\alpha\,\beta}\,\gamma^{\,\nu}),$ (11.75)

where $ \gamma_\mu = g_{\mu\,\nu}\,\gamma^{\,\nu}$ . Because this equation must hold for arbitrary $ \delta\omega^{\,\alpha\,\beta}$ , we deduce that

$\displaystyle 2\,{\rm i}\,(g^\nu_{~\alpha}\,\gamma_\beta -g^\nu_{~\beta}\,\gamma_\alpha) = [\gamma^{\,\nu}, \sigma_{\alpha\,\beta}].$ (11.76)

Making use of the anti-commutation relations (11.29), it can be shown that a suitable solution of the previous equation is

$\displaystyle \sigma_{\mu\,\nu} = \frac{{\rm i}}{2}\,[\gamma_\mu,\gamma_\nu].$ (11.77)

(See Exercise 7.) Hence,

$\displaystyle A$ $\displaystyle = 1 + \frac{1}{8}\,[\gamma_\mu,\gamma_\nu]\,\delta\omega^{\,\mu\,\nu},$ (11.78)
$\displaystyle A^{-1}$ $\displaystyle = 1 - \frac{1}{8}\,[\gamma_\mu,\gamma_\nu]\,\delta\omega^{\,\mu\,\nu}.$ (11.79)

Now that we have found the correct transformation rules for an infinitesimal Lorentz transformation, we can easily find those for a finite transformation by building it up from a large number of successive infinitesimal transforms [9]. (See Exercises 8 and 9.)

Making use of Equation (11.34), as well as $ \gamma^{\,0}\,\gamma^{\,0}=1$ , the Hermitian conjugate of Equation (11.78) can be shown to take the form

$\displaystyle A^\dag = 1-\frac{1}{8}\,\gamma^{\,0}\,[\gamma_\mu,\gamma_\nu]\,\gamma^{\,0}\,\delta\omega^{\,\mu\,\nu} = \gamma^{\,0}\,A^{-1}\,\gamma^{\,0}.$ (11.80)

Hence, Equation (11.65) yields

$\displaystyle A^\dag\,\gamma^{\,0}\,\gamma^{\,\mu}\,A = a^{\,\mu}_{~\nu}\,\gamma^{\,0}\,\gamma^{\,\nu}.$ (11.81)

It follows that

$\displaystyle \psi^\dag\,A^\dag\,\gamma^{\,0}\,\gamma^{\,\mu}\,A\,\psi= a^{\,\mu}_{~\nu}\,\psi^\dag\,\gamma^{\,0}\,\gamma^{\,\nu}\,\psi,$ (11.82)

or

$\displaystyle \psi^{\dag '}\,\gamma^{\,0}\,\gamma^{\,\mu}\,\psi'= a^{\,\mu}_{~\nu}\,\psi^\dag\,\gamma^{\,0}\,\gamma^{\,\nu}\,\psi,$ (11.83)

which implies that

$\displaystyle j^{\,\mu'} = a^{\,\mu}_{~\nu}\,j^{\,\nu},$ (11.84)

where the $ j^{\,\mu}$ are defined in Equation (11.46). This proves that the $ j^{\,\mu}$ transform as the contravariant components of a 4-vector.


next up previous
Next: Free Electron Motion Up: Relativistic Electron Theory Previous: Dirac Equation
Richard Fitzpatrick 2016-01-22