next up previous
Next: Landau Collision Operator Up: Collisions Previous: Two-Body Coulomb Collisions


Rutherford Scattering Cross-Section

Consider a particle of type $ 1$ , incident with relative velocity $ u$ onto an ensemble of particles of type $ 2$ with number density $ n_2$ . If $ p_1({\mit\Omega})\,d{\mit\Omega}$ is the probability per unit time of the particle being scattered into the range of solid angle $ {\mit\Omega}$ to $ {\mit\Omega}+d{\mit\Omega}$ , then the differential scattering cross-section, $ d\sigma/d{\mit\Omega}$ , is defined via (Reif 1965)

$\displaystyle p_1({\mit\Omega})\,d{\mit\Omega} = n_2\,u\,\frac{d\sigma}{d{\mit\Omega}}\,d{\mit\Omega}.$ (3.83)

Assuming that the scattering is azimuthally symmetric (i.e., symmetric in $ \phi$ ), we can write $ d{\mit\Omega}=2\pi\,\sin\chi\,d\chi$ . Now, the probability per unit time of a collision having an impact parameter in the range $ b$ to $ b+db$ is

$\displaystyle p_1(b)\,db = n_2\,u\,2\pi\,b\,db.$ (3.84)

Furthermore, we can write

$\displaystyle p_1({\mit\Omega})\,\left\vert\frac{d{\mit\Omega}}{db}\right\vert = p_1(b),$ (3.85)

provided that $ \chi$ and $ b$ are related according to the two-particle scattering law, Equation (3.82). It follows that

$\displaystyle \frac{d\sigma}{d{\mit\Omega}} = \frac{2\pi\,b}{\vert d{\mit\Omega}/db\vert}.$ (3.86)

Equation (3.82) yields

$\displaystyle \frac{d{\mit\Omega}}{db} = 2\pi\,\sin\chi\,\frac{d\chi}{db} = -2\...
...\left(\frac{4\pi\,\epsilon_0\,\mu_{12}\,u^2}{e_1\,e_2}\right)2\,\sin^2(\chi/2).$ (3.87)

Finally, Equations (3.82), (3.86), and (3.87) can be combined to give the so-called Rutherford scattering cross-section,

$\displaystyle \frac{d\sigma}{d{\mit\Omega}} = \frac{1}{4}\left(\frac{e_1\,e_2}{4\pi\,\epsilon_0\,\mu_{12}\,u^2}\right)^2 \frac{1}{\sin^4(\chi/2)}.$ (3.88)

It is immediately apparent, from the previous formula, that two-particle Coulomb collisions are dominated by small-angle (i.e., small $ \chi$ ) scattering events.


next up previous
Next: Landau Collision Operator Up: Collisions Previous: Two-Body Coulomb Collisions
Richard Fitzpatrick 2016-01-23