Next: Exercises
Up: Magnetostatic Fields
Previous: Circular Current Loop
Localized Current Distribution
Consider the magnetic field generated by a current distribution that is localized in some relatively small region of space centered on the origin.
From Equation (621), we have
|
(661) |
Assuming that
, so that our observation point lies well outside the distribution, we can write
|
(662) |
Thus, the
th Cartesian component of the vector potential has the expansion
|
(663) |
Consider the integral
|
(664) |
where
is a divergence-free [see Equation (618)] localized current distribution, and
and
are
two well-behaved functions.
Integrating the first term by parts, making use of the fact that
as
(because the current distribution
is localized), we obtain
|
(665) |
Hence,
|
(666) |
because
. Thus, we have proved that
|
(667) |
Let
and
(where
is the
th component of
). It immediately follows from Equation (668) that
|
(668) |
Likewise, if
and
then Equation (668) implies that
|
(669) |
According to Equations (664) and (669),
|
(670) |
Now,
|
(671) |
where use has been made of Equation (670), as well as the Einstein summation convention. Thus,
|
(672) |
Hence, we obtain
|
(673) |
It is conventional to define the magnetization, or magnetic moment density, as
|
(674) |
The integral of this quantity is known as the magnetic moment:
|
(675) |
It immediately follows from Equation (674) that the vector potential a long way from a localized current distribution takes the form
|
(676) |
The corresponding magnetic field is
|
(677) |
Thus, we have demonstrated that the magnetic field far from any localized current distribution takes the form of a magnetic
dipole field whose moment is given by the integral (676).
Consider a localized current distribution that consists of a closed planar loop carrying the current
. If
is a
line element of the loop then Equation (676) reduces to
|
(678) |
However,
, where
is a triangular element of vector area defined by the two ends of
and the origin.
Thus, the loop integral gives the total vector area,
, of the loop. It follows that
|
(679) |
where
is a unit normal to the loop in the sense determined by the right-hand circulation rule (with the current determining the sense
of circulation). Of course, Equation (680) is identical to Equation (659).
Next: Exercises
Up: Magnetostatic Fields
Previous: Circular Current Loop
Richard Fitzpatrick
2014-06-27