next up previous
Next: Potential due to a Up: Relativity and electromagnetism Previous: The dual electromagnetic field

Transformation of fields

The electromagnetic field tensor transforms according to the standard rule
\begin{displaymath}
F^{\mu'\nu'} = F^{\mu\nu}  p_\mu^{\mu'}  p_{\nu}^{\nu'}.
\end{displaymath} (1511)

This easily yields the celebrated rules for transforming electromagnetic fields:
$\displaystyle E_\parallel'$ $\textstyle =$ $\displaystyle E_\parallel,$ (1512)
$\displaystyle B_\parallel'$ $\textstyle =$ $\displaystyle B_\parallel,$ (1513)
$\displaystyle {\bf E}_\perp'$ $\textstyle =$ $\displaystyle \gamma ({\bf E}_\perp +{\bf v}\times{\bf B}),$ (1514)
$\displaystyle {\bf B}_\perp'$ $\textstyle =$ $\displaystyle \gamma ({\bf B}_\perp-{\bf v}\times{\bf E}/c^2),$ (1515)

where ${\bf v}$ is the relative velocity between the primed and unprimed frames, and the perpendicular and parallel directions are, respectively, perpendicular and parallel to ${\bf v}$.

At this stage, we may conveniently note two important invariants of the electromagnetic field. They are

\begin{displaymath}
\frac{1}{2}  F_{\mu\nu} F^{\mu\nu} = c^2  B^2 - E^2,
\end{displaymath} (1516)

and
\begin{displaymath}
\frac{1}{4}  G_{\mu\nu} F^{\mu\nu} = c {\bf E}\!\cdot \! {\bf B}.
\end{displaymath} (1517)

The first of these quantities is a proper-scalar, and the second a pseudo-scalar.


next up previous
Next: Potential due to a Up: Relativity and electromagnetism Previous: The dual electromagnetic field
Richard Fitzpatrick 2006-02-02