Next: The vector product
Up: Vectors
Previous: Vector areas
A scalar quantity is invariant under all possible rotational transformations.
The individual components of a vector are not scalars because they change under
transformation. Can we form a scalar out of some combination of the components
of one, or more, vectors? Suppose that we were to define the
``ampersand'' product,
|
(16) |
for general vectors and . Is
invariant under transformation, as must be the case if it is a scalar number?
Let us consider an example. Suppose that
and
. It is easily seen that
. Let
us now rotate the basis through about the -axis. In the new
basis,
and
, giving
. Clearly,
is not invariant under rotational transformation, so
the above definition is a bad one.
Consider, now,
the dot product or scalar product:
|
(17) |
Let us rotate the basis though degrees about the -axis. According to
Eqs. (10)-(12), in the new basis
takes the form
Thus,
is invariant under rotation about the -axis. It can easily
be shown that it is also invariant under rotation about the - and -axes.
Clearly,
is a true scalar, so the above definition is
a good one. Incidentally,
is the only
simple combination of
the components of two vectors which transforms like a scalar. It is easily
shown that the dot product is commutative and distributive:
The associative property is meaningless for the dot product, because we cannot
have
, since
is scalar.
We have shown that the dot product
is coordinate independent.
But what is the physical significance of this? Consider the special case
where
. Clearly,
|
(20) |
if is the position vector of relative to the origin .
So, the invariance of
is equivalent to the invariance
of the length, or magnitude, of vector under transformation. The length of
vector is usually denoted (``the modulus of '') or sometimes
just , so
|
(21) |
Figure 5:
|
Let us now investigate the general case. The length squared of (see Fig. 5) is
|
(22) |
However, according to the ``cosine rule'' of trigonometry,
|
(23) |
where denotes the length of side . It follows that
|
(24) |
Clearly, the invariance of
under transformation is equivalent
to the invariance of the angle subtended between the two vectors. Note that
if
then either , , or the vectors
and are perpendicular. The angle subtended between two vectors
can easily be obtained from the dot product:
|
(25) |
The work performed by a constant force moving an object through a displacement
is the product of the magnitude of times the displacement in the direction
of . If the angle subtended between and is then
|
(26) |
The rate of flow of liquid of constant velocity through a loop of vector area
is the product of the magnitude of the area times the component of the
velocity perpendicular to the loop. Thus,
|
(27) |
Next: The vector product
Up: Vectors
Previous: Vector areas
Richard Fitzpatrick
2006-02-02