Spherical harmonics
The spherical harmonics, denoted
, where
is a non-negative integer, and
an integer lying in the range
, are the well-behaved solutions to
![$\displaystyle r^{\,2}\,\nabla^{\,2} Y_l^{\,m} + l\,(l+1)\,Y_l^{\,m} = 0$](img4109.png) |
(A.159) |
on the surface of a sphere (i.e.,
constant). Here,
denotes a Laplacian (Riley 1974a), and
,
,
are standard spherical coordinates. The spherical harmonics take the form (Jackson 1975)
![$\displaystyle Y_l^{\,m}(\theta,\phi) = \sqrt{\frac{(2\,l+1)}{4\pi}\,\frac{(l-m)!}{(l+m)!}}\,P_l^{\,m}(\cos\theta)\,\,{\rm e}^{\,{\rm i}\,m\,\phi},$](img4112.png) |
(A.160) |
where the
are associated Legendre polynomials (Abramowitz and Stegun 1965a).
In particular,
![$\displaystyle Y_l^{\,0}(\theta,\phi) = \sqrt{\frac{2\,l+1}{4\pi}}\,P_l(\cos\theta),$](img4114.png) |
(A.161) |
where the
are the Legendre polynomials introduced in Section 3.4. The spherical harmonics satisfy
![$\displaystyle Y_l^{\,m\,\ast} = (-1)^m\,Y_l^{\,-m},$](img4116.png) |
(A.162) |
and have the property that they are orthonormal when integrated over the surface of a sphere; that is,
![$\displaystyle \int_0^\pi\oint Y_l^{\,m}\,Y_{l'}^{\,m'\ast}\,\sin\theta\,d\theta\,d\phi = \delta_{ll'}\,\delta_{mm'}.$](img4117.png) |
(A.163) |
The first few spherical harmonics are:
![$\displaystyle Y_0^{\,0}$](img4118.png) |
![$\displaystyle = \sqrt{\frac{1}{4\pi}},$](img4119.png) |
(A.164) |
![$\displaystyle Y_1^{\,-1}$](img4120.png) |
![$\displaystyle = \sqrt{\frac{3}{8\pi}}\,\sin\theta\,\,{\rm e}^{-{\rm i}\,\phi},$](img4121.png) |
(A.165) |
![$\displaystyle Y_1^{\,0}$](img4122.png) |
![$\displaystyle = \sqrt{\frac{3}{4\pi}}\,\cos\theta,$](img4123.png) |
(A.166) |
![$\displaystyle Y_1^{\,1}$](img4124.png) |
![$\displaystyle =- \sqrt{\frac{3}{8\pi}}\,\sin\theta\,\,{\rm e}^{\,{\rm i}\,\phi},$](img4125.png) |
(A.167) |
![$\displaystyle Y_2^{\,-2}$](img4126.png) |
![$\displaystyle = \sqrt{\frac{15}{32\pi}}\,\sin^2\theta\,\,{\rm e}^{-{\rm i}\,2\,\phi},$](img4127.png) |
(A.168) |
![$\displaystyle Y_2^{\,-1}$](img4128.png) |
![$\displaystyle = \sqrt{\frac{15}{8\pi}}\,\sin\theta\,\cos\theta\,\,{\rm e}^{-{\rm i}\,\phi},$](img4129.png) |
(A.169) |
![$\displaystyle Y_2^{\,0}$](img4130.png) |
![$\displaystyle = \sqrt{\frac{5}{16\pi}}\,(3\,\cos^2\theta-1),$](img4131.png) |
(A.170) |
![$\displaystyle Y_2^{\,1}$](img4132.png) |
![$\displaystyle = -\sqrt{\frac{15}{8\pi}}\,\sin\theta\,\cos\theta\,\,{\rm e}^{\,{\rm i}\,\phi},$](img4133.png) |
(A.171) |
![$\displaystyle Y_2^{\,2}$](img4134.png) |
![$\displaystyle = \sqrt{\frac{15}{32\pi}}\,\sin^2\theta\,\,{\rm e}^{\,{\rm i}\,2\,\phi}.$](img4135.png) |
(A.172) |