Gravity
The force that causes objects to fall toward the surface of the Earth, maintains the
Moon in orbit about the Earth, and maintains the planets in orbit around the Sun, is
called gravity, and was first correctly described by Isaac
Newton in 1687. According to Newton, any two point mass objects (or spherically symmetric objects of finite extent)
exert a force of attraction on one another. This force points along the
line of centers joining the objects, is directly proportional to the product
of the objects' masses, and inversely proportional to the square of the distance between them.
Consider a system consisting of two point mass objects. Let object
have mass
and displacement
.
Let object
have mass
and displacement
.
The gravitational force exerted on object 2 by object 1 is
written
 |
(1.238) |
The constant of proportionality,
, is called the universal gravitational constant,
and takes the value
 |
(1.239) |
This constant was first `measured' by Henry Cavendish in 1798 (to be more exact, the result
can be inferred from Cavendish's results).
An equal and opposite force to (1.238) acts on object 1.
Suppose that we have a system of
point mass objects. Let the
th object have mass
and displacement
. Now, it is an experimentally verified fact that gravity is a superposable force. In other words, the gravitational force exerted
on object
by object
is unaffected by the presence of any other objects in the universe. Hence, the net gravitational
force experienced by object
is
 |
(1.240) |
Note that object
is missing from the sum on the right-hand side of the previous equation because
this object cannot exert a gravitational force on itself.
Suppose, finally, that a point object of mass
is located at the origin of our coordinate system. It follows from Equation (1.238)
that the gravitational acceleration, due to the gravitational attraction of mass
, experienced by another point object whose displacement is
is
 |
(1.241) |