Next: Hamilton's Principle
Up: Hamiltonian Dynamics
Previous: Conditional Variation
Multi-Function Variation
Suppose that we wish to maximize or minimize the functional
![\begin{displaymath}
I = \int_a^b F(y_1,y_2,\cdots,y_{\cal F},y_1',y_2',\cdots,y_{\cal F}',x)\,dx.
\end{displaymath}](img1781.png) |
(707) |
Here, the integrand
is now a functional of the
independent
functions
, for
. A fairly straightforward extension of the
analysis in Section 10.2 yields
separate Euler-Lagrange equations,
![\begin{displaymath}
\frac{d}{dx}\!\left(\frac{\partial F}{\partial y_i'}\right)-\frac{\partial F}{\partial y_i} = 0,
\end{displaymath}](img1783.png) |
(708) |
for
, which determine the
functions
. If
does not
explicitly depend on the function
then the
th Euler-Lagrange
equation simplifies to
![\begin{displaymath}
\frac{\partial F}{\partial y_k'} = {\rm const}.
\end{displaymath}](img1785.png) |
(709) |
Likewise, if
does not explicitly depend on
then all
Euler-Lagrange equations simplify to
![\begin{displaymath}
y_i'\,\frac{\partial F}{\partial y_i'} - F = {\rm const},
\end{displaymath}](img1786.png) |
(710) |
for
.
Richard Fitzpatrick
2011-03-31