Next: Exercises
Up: Calculus of Variations
Previous: Conditional Variation
Multi-Function Variation
Suppose that we wish to maximize or minimize the functional
![$\displaystyle I = \int_a^b F(y_1,y_2,\cdots,y_{\cal F},y_1',y_2',\cdots,y_{\cal F}',x)\,dx.$](img7362.png) |
(E.33) |
Here, the integrand
is now a functional of the
independent
functions
, for
. A fairly straightforward extension of the
analysis in Section E.2 yields
separate Euler-Lagrange equations,
![$\displaystyle \frac{d}{dx}\!\left(\frac{\partial F}{\partial y_i'}\right)-\frac{\partial F}{\partial y_i} = 0,$](img7365.png) |
(E.34) |
for
, which determine the
functions
. If
does not
explicitly depend on the function
then the
th Euler-Lagrange
equation simplifies to
![$\displaystyle \frac{\partial F}{\partial y_k'} = {\rm const}.$](img7367.png) |
(E.35) |
Likewise, if
does not explicitly depend on
then all
Euler-Lagrange equations simplify to
![$\displaystyle y_i'\,\frac{\partial F}{\partial y_i'} - F = {\rm const},$](img7368.png) |
(E.36) |
for
.
Richard Fitzpatrick
2016-03-31