Next: Coordinate Transformations
Up: Vectors and Vector Fields
Previous: Vector Algebra
Consider a Cartesian coordinate system
, consisting of
an origin,
, and three mutually perpendicular coordinate axes,
,
, and
. (See Figure A.4.) Such a system is said to be right-handed if, when looking along the
direction, a
clockwise
rotation about
is required to take
into
. Otherwise, it is said to be left-handed. It is conventional to always use a right-handed coordinate system.
Figure A.4:
A right-handed Cartesian coordinate system.
|
It is convenient to define unit vectors,
,
, and
, parallel to
,
, and
, respectively.
Incidentally, a unit vector is a vector whose magnitude is unity. The position vector,
, of some general point
whose Cartesian coordinates
are (
,
,
) is then given by
|
(A.11) |
In other words, we can get from
to
by moving a distance
parallel to
, then a distance
parallel to
, and then a distance
parallel to
. Similarly, if
is an arbitrary vector then
|
(A.12) |
where
,
, and
are termed the Cartesian components of
. It is conventional to write
.
It follows that
,
, and
. Of course,
.
According to the three-dimensional generalization of the Pythagorean theorem, the distance
is
given by
|
(A.13) |
By analogy, the magnitude of a general vector
takes the form
|
(A.14) |
If
and
then it is
easily demonstrated that
|
(A.15) |
Furthermore, if
is a scalar then it is apparent that
|
(A.16) |
Next: Coordinate Transformations
Up: Vectors and Vector Fields
Previous: Vector Algebra
Richard Fitzpatrick
2016-03-31