next up previous
Next: Total Gravitational Potential Up: Terrestrial Ocean Tides Previous: Surface Harmonics and Solid


Planetary Rotation

Suppose that the planet is rotating rigidly about the axis $ \theta=0$ at the angular velocity $ {\mit\Omega}$ (where $ {\mit\Omega}\gg \omega_1$ ). The planet's rotational angular velocity vector is thus

$\displaystyle \mbox{\boldmath$\Omega$}$$\displaystyle = {\mit\Omega}\,\cos\theta\,{\bf e}_r - {\mit\Omega}\,\sin\theta\,{\bf e}_\theta.$ (12.43)

Let

$\displaystyle \phi = \varphi - {\mit\Omega}\,t.$ (12.44)

It follows that $ r$ , $ \theta $ , $ \phi$ are spherical coordinates in a frame of reference that co-rotates with the planet.



Richard Fitzpatrick 2016-03-31