next up previous
Next: Solar and Lunar Eclipses Up: Lunar-Solar Syzygies and Eclipses Previous: Determination of Lunar-Solar Elongation

Example Syzygy Calculations

Example 1: Sixth new moon in 2004 CE:
 
From Table 42, the date of first new moon in 2004 CE is 2453026.4 JD. Now, the lunar-solar elongation increases at the mean rate $n_M - n_S = 13.17639646-0.98564735=12.1907491^\circ$ per day, or $360^\circ$ in $29.53$ days--the latter time period is known as a synodic month. Hence, a rough estimate for the date of the sixth new moon in 2004 CE is five synodic months after that of the first: i.e., $2453026.4
+ 5\times 29.53\simeq 2453174.1$ JD. It follows that $\Delta t = 2453174.1-2451545.0=1629.1$ JD. Let us calculate the lunar-solar elongation at this date. From Table 40:
         
$t$(JD) $ \bar{D}(^\circ)$ $\bar{F}_M(^\circ)$ $M_S(^\circ)$ $M_M(^\circ)$
         
+1000 $310.749$ $269.350$ $265.600$ $104.993$
+600 $114.449$ $17.610$ $231.360$ $278.996$
+20 $243.815$ $264.587$ $19.712$ $261.300$
+9 $109.717$ $119.064$ $8.870$ $117.585$
+.1 $1.219$ $1.323$ $0.099$ $1.306$
Epoch $297.864$ $93.284$ $357.588$ $134.916$
  $1077.813$ $765.218$ $883.229$ $899.096$
Modulus $357.813$ $45.218$ $163.229$ $179.096$
         

Thus,

\begin{displaymath}
a_1=M_M\simeq 179^\circ,~~~a_2=2\bar{D}-M_M = 2\times 357.813-179.082\simeq 177^\circ,
\end{displaymath}


\begin{displaymath}
a_3=\bar{D}\simeq 358^\circ,~~~a_4 = M_S\simeq 163^\circ,
\end{displaymath}


\begin{displaymath}
a_5=2\bar{F}_M = 2\times 45.218\simeq 90^\circ.
\end{displaymath}

Table 41 yields

\begin{displaymath}
q_1(a_1)=0.101^\circ,~~q_2(a_2)= 0.070^\circ,~~q_3(a_3) = -0.045^\circ,
\end{displaymath}


\begin{displaymath}q_4(a_4)=-0.596^\circ,~~q_5(a_5)= -0.119^\circ.
\end{displaymath}

Hence,

\begin{displaymath}
D = \bar{D} + q_1+q_2+q_3+q_4+q_5=357.813+0.101+0.070-0.045-0.596-0.119\simeq
357.22^\circ.
\end{displaymath}

Now, the actual new moon takes place when $D=360.00^\circ$. Thus, a far better estimate for the date of the sixth new moon in 2004 CE is $2453174.10 +(360.00-357.22)/12.1907491= 2453174.33$ JD. This corresponds to 20:00 UT on June 17th.

 
Example 2: Third full moon in 1982 CE:
 
From Table 42, the fractional Julian day number of first new moon in 1982 CE is 2444994.7 JD, which corresponds to January 25th. Since there is more than half a synodic month between this event and the start of year, we conclude that the first full moon in 1982 CE took place before January 25th. Hence, a rough estimate for the date of the third full moon in 1982 CE is one and a half synodic months after that of the first new moon: i.e., $2444994.7
+ 1.5\times 29.53\simeq 2445039.0$ JD. It follows that $\Delta t = 2445039.0 -2451545.0=-6506.0$ JD. Let us calculate the lunar-solar elongation at this date. From Table 40:
         
$t$(JD) $ \bar{D}(^\circ)$ $\bar{F}_M(^\circ)$ $M_S(^\circ)$ $M_M(^\circ)$
         
-6000 $-64.495$ $-176.102$ $-153.601$ $-269.958$
-500 $-335.375$ $-134.675$ $-132.800$ $-52.496$
-6 $-73.144$ $-79.376$ $-5.914$ $-78.390$
Epoch $297.864$ $93.284$ $357.588$ $134.916$
  $-175.150$ $-296.869$ $65.273$ $-265.928$
Modulus $184.131$ $63.062$ $65.273$ $94.072$
         

Thus,

\begin{displaymath}
a_1=M_M\simeq 94^\circ,~~~a_2=2\bar{D}-M_M = 2\times 184.850-94.072\simeq 276^\circ,
\end{displaymath}


\begin{displaymath}
a_3=\bar{D}\simeq 185^\circ,~~~a_4 = M_S\simeq 65^\circ,
\end{displaymath}


\begin{displaymath}
a_5=2\bar{F}_M = 2\times 63.062\simeq 126^\circ.
\end{displaymath}

Table 41 yields

\begin{displaymath}
q_1(a_1)=6.239^\circ,~~q_2(a_2)= -1.320^\circ,~~q_3(a_3) = 0.119^\circ,
\end{displaymath}


\begin{displaymath}q_4(a_4)=-1.896^\circ,~~q_5(a_5)= -0.097^\circ.
\end{displaymath}

Hence,

\begin{displaymath}
D = \bar{D} + q_1+q_2+q_3+q_4+q_5=184.850+6.239-1.320+0.119-1.896-0.097\simeq
187.895^\circ.
\end{displaymath}

Now, the actual full moon takes place when $D=180.00^\circ$. Thus, a far better estimate for the date of the third full moon in 1982 CE is $2445039.0 +(180.00-187.90)/12.1907491= 2445038.35$ JD. This corresponds to 20:00 UT on March 9th.


next up previous
Next: Solar and Lunar Eclipses Up: Lunar-Solar Syzygies and Eclipses Previous: Determination of Lunar-Solar Elongation
Richard Fitzpatrick 2010-07-21