Next: Solar and Lunar Eclipses
Up: Lunar-Solar Syzygies and Eclipses
Previous: Determination of Lunar-Solar Elongation
Example 1: Sixth new moon in 2004 CE:
From Table 42, the date of first new moon in 2004 CE is 2453026.4 JD. Now, the
lunar-solar elongation increases at the mean rate
per day, or
in
days--the latter time period is known as a synodic month. Hence, a rough estimate for the
date of the sixth new moon in 2004 CE is five synodic months after that of the first: i.e.,
JD. It follows that
JD. Let us calculate the lunar-solar elongation at this date.
From Table 40:
|
|
|
|
|
(JD) |
![$ \bar{D}(^\circ)$](img1479.png) |
![$\bar{F}_M(^\circ)$](img1480.png) |
![$M_S(^\circ)$](img1481.png) |
![$M_M(^\circ)$](img1482.png) |
|
|
|
|
|
+1000 |
![$310.749$](img1483.png) |
![$269.350$](img1237.png) |
![$265.600$](img782.png) |
![$104.993$](img1236.png) |
+600 |
![$114.449$](img1484.png) |
![$17.610$](img1485.png) |
![$231.360$](img1486.png) |
![$278.996$](img1487.png) |
+20 |
![$243.815$](img1488.png) |
![$264.587$](img1489.png) |
![$19.712$](img1490.png) |
![$261.300$](img1491.png) |
+9 |
![$109.717$](img1492.png) |
![$119.064$](img1493.png) |
![$8.870$](img1494.png) |
![$117.585$](img1495.png) |
+.1 |
![$1.219$](img1496.png) |
![$1.323$](img1497.png) |
![$0.099$](img1498.png) |
![$1.306$](img1499.png) |
Epoch |
![$297.864$](img1500.png) |
![$93.284$](img1249.png) |
![$357.588$](img788.png) |
![$134.916$](img1248.png) |
|
![$1077.813$](img1501.png) |
![$765.218$](img1502.png) |
![$883.229$](img1503.png) |
![$899.096$](img1504.png) |
Modulus |
![$357.813$](img1505.png) |
![$45.218$](img1506.png) |
![$163.229$](img1507.png) |
![$179.096$](img1508.png) |
|
|
|
|
|
Thus,
Table 41 yields
Hence,
Now, the actual new moon takes place when
. Thus, a far better estimate for the date
of the sixth new moon in 2004 CE is
JD.
This corresponds to 20:00 UT on June 17th.
Example 2: Third full moon in 1982 CE:
From Table 42, the fractional Julian day number of first new moon in 1982 CE is 2444994.7 JD, which
corresponds to January 25th. Since there is more than half a synodic month between this event and the
start of year, we conclude that the first full moon in 1982 CE took place before January 25th. Hence, a rough estimate for the
date of the third full moon in 1982 CE is one and a half synodic months after that of the first new moon: i.e.,
JD. It follows that
JD. Let us calculate the lunar-solar elongation at
this date.
From Table 40:
|
|
|
|
|
(JD) |
![$ \bar{D}(^\circ)$](img1479.png) |
![$\bar{F}_M(^\circ)$](img1480.png) |
![$M_S(^\circ)$](img1481.png) |
![$M_M(^\circ)$](img1482.png) |
|
|
|
|
|
-6000 |
![$-64.495$](img1519.png) |
![$-176.102$](img1520.png) |
![$-153.601$](img1521.png) |
![$-269.958$](img1522.png) |
-500 |
![$-335.375$](img1523.png) |
![$-134.675$](img1524.png) |
![$-132.800$](img1525.png) |
![$-52.496$](img1526.png) |
-6 |
![$-73.144$](img1527.png) |
![$-79.376$](img1528.png) |
![$-5.914$](img1529.png) |
![$-78.390$](img1530.png) |
Epoch |
![$297.864$](img1500.png) |
![$93.284$](img1249.png) |
![$357.588$](img788.png) |
![$134.916$](img1248.png) |
|
![$-175.150$](img1531.png) |
![$-296.869$](img1532.png) |
![$65.273$](img1533.png) |
![$-265.928$](img1534.png) |
Modulus |
![$184.131$](img1535.png) |
![$63.062$](img1536.png) |
![$65.273$](img1533.png) |
![$94.072$](img1537.png) |
|
|
|
|
|
Thus,
Table 41 yields
Hence,
Now, the actual full moon takes place when
. Thus, a far better estimate for the date
of the third full moon in 1982 CE is
JD.
This corresponds to 20:00 UT on March 9th.
Next: Solar and Lunar Eclipses
Up: Lunar-Solar Syzygies and Eclipses
Previous: Determination of Lunar-Solar Elongation
Richard Fitzpatrick
2010-07-21