next up previous
Next: The Superior Planets Up: Lunar-Solar Syzygies and Eclipses Previous: Example Eclipse Calculations

Eclipse Statistics

Consider a very large collection of lunar-solar syzygies. For such a collection, we expect the lunar argument of latitude, $F$, the lunar mean anomaly, $M_M$, and the solar mean anomaly, $M_S$, to be statistically independent of one another, and randomly distributed in the range $0^\circ $ to $360^\circ$. Using this insight, we can easily calculate the probability that a new moon is coincident with a solar eclipse, or a full moon with a lunar eclipse, using Eq. (125) and the criteria (150)-(154). For a new moon we find:
   
Probability of total solar eclipse: $4.2\%$
Probability of annular solar eclipse: $7.7\%$
Probability of partial solar eclipse: $6.6\%$
Probability of any solar eclipse: $18.5\%$
   

For a full moon we get:
   
Probability of total lunar eclipse: $5.2\%$
Probability of partial lunar eclipse: $6.5\%$
Probability of any lunar eclipse: $11.7\%$
   

Thus, we can see that, over a long period of time, the ratio of the number of total/annular solar eclipses to the number of partial solar eclipses is about 9/5, whereas the ratio of the number of partial lunar eclipses to the number of total lunar eclipses is approximately 5/4. Furthermore, the ratio of the number of solar eclipses to the number of lunar eclipses is about 11/7. Since there are 12.37 synodic months in a year, the mean number of solar eclipses per year is approximately $12.37\times 0.185\simeq 2.3$, whereas the mean number of lunar eclipses per year is about $12.37\times 0.117\simeq 1.4$. Clearly, solar eclipses are more common that lunar eclipses. On the other hand, at a given observation site on the earth, lunar eclipses are much more common than solar eclipses, since the former are visible all over the earth, whereas the latter are only visible in a very localized region.


Table 40: Mean motion of the lunar-solar elongation. Here, $\Delta t = t-t_0$, $\Delta \bar{D}= \bar{D}-\bar{D}_0$, $\Delta \bar{F}_M= \bar{F}_M-\bar{F}_{M\,0}$, $\Delta M_S = M_S - M_{S\,0}$, and $\Delta M_M= M_M-M_{M\,0}$. At epoch ( $t_0= 2\,451\,545.0$ JD), $\bar{D}_0 = 297.864^\circ$, $\bar{F}_{M\,0} = 93.284^\circ$, $M_{S\,0} = 357.588^\circ$, and $M_{M\,0} = 134.916^\circ$.
$\Delta t$(JD) $\Delta \bar{D}(^\circ)$ $\Delta \bar{F}_M(^\circ)$ $\Delta M_S(^\circ)$ $\Delta M_M (^\circ)$ $\Delta t$(JD) $\Delta \bar{D}(^\circ)$ $\Delta \bar{F}_M(^\circ)$ $\Delta M_S(^\circ)$ $\Delta M_M (^\circ)$
                   
10,000 227.491 173.503 136.002 329.930 1,000 310.749 269.350 265.600 104.993
20,000 94.982 347.005 272.005 299.859 2,000 261.498 178.701 171.200 209.986
30,000 322.473 160.508 48.007 269.788 3,000 212.247 88.051 76.801 314.979
40,000 189.964 334.011 184.010 239.718 4,000 162.996 357.401 342.401 59.972
50,000 57.455 147.513 320.012 209.648 5,000 113.746 266.751 248.001 164.965
60,000 284.947 321.016 96.015 179.577 6,000 64.495 176.102 153.601 269.958
70,000 152.438 134.519 232.017 149.506 7,000 15.244 85.452 59.202 14.951
80,000 19.929 308.022 8.020 119.436 8,000 325.993 354.802 324.802 119.944
90,000 247.420 121.524 144.022 89.366 9,000 276.742 264.152 230.402 224.937
                   
100 139.075 242.935 98.560 226.499 10 121.907 132.294 9.856 130.650
200 278.150 125.870 197.120 92.999 20 243.815 264.587 19.712 261.300
300 57.225 8.805 295.680 319.498 30 5.722 36.881 29.568 31.950
400 196.300 251.740 34.240 185.997 40 127.630 169.174 39.424 162.600
500 335.375 134.675 132.800 52.496 50 249.537 301.468 49.280 293.250
600 114.449 17.610 231.360 278.996 60 11.445 73.761 59.136 63.900
700 253.524 260.545 329.920 145.495 70 133.352 206.055 68.992 194.550
800 32.599 143.480 68.480 11.994 80 255.260 338.348 78.848 325.199
900 171.674 26.415 167.040 238.494 90 17.167 110.642 88.704 95.849
                   
1 12.191 13.229 0.986 13.065 0.1 1.219 1.323 0.099 1.306
2 24.381 26.459 1.971 26.130 0.2 2.438 2.646 0.197 2.613
3 36.572 39.688 2.957 39.195 0.3 3.657 3.969 0.296 3.919
4 48.763 52.917 3.942 52.260 0.4 4.876 5.292 0.394 5.226
5 60.954 66.147 4.928 65.325 0.5 6.095 6.615 0.493 6.532
6 73.144 79.376 5.914 78.390 0.6 7.314 7.938 0.591 7.839
7 85.335 92.605 6.899 91.455 0.7 8.534 9.261 0.690 9.145
8 97.526 105.835 7.885 104.520 0.8 9.753 10.583 0.788 10.452
9 109.717 119.064 8.870 117.585 0.9 10.972 11.906 0.887 11.758



Table 41: Anomalies of the lunar-solar elongation. The common argument corresponds to $M_M$, $2\bar{D}-M_M$, $\bar{D}$, $M_S$, and $2\bar{F}_M$ for the case of $q_1$, $q_2$, $q_3$, $q_4$, and $q_5$, respectively. If the argument is in parenthesies then the anomalies are minus the values shown in the table.
Arg. ($^\circ$) $q_1(^\circ)$ $q_2(^\circ)$ $q_3(^\circ)$ $q_4(^\circ)$ $q_5(^\circ)$ Arg. ($^\circ$) $q_1(^\circ)$ $q_2(^\circ)$ $q_3(^\circ)$ $q_4(^\circ)$ $q_5(^\circ)$
000/(360) 0.000 0.000 0.000 -0.000 -0.000 090/(270) 6.289 1.327 -0.044 -2.075 -0.119
002/(358) 0.237 0.046 0.045 -0.074 -0.004 092/(268) 6.268 1.326 -0.090 -2.073 -0.119
004/(356) 0.473 0.093 0.089 -0.148 -0.008 094/(266) 6.239 1.324 -0.136 -2.067 -0.119
006/(354) 0.709 0.139 0.133 -0.221 -0.012 096/(264) 6.203 1.320 -0.181 -2.060 -0.119
008/(352) 0.943 0.185 0.177 -0.294 -0.017 098/(262) 6.160 1.314 -0.226 -2.050 -0.118
010/(350) 1.176 0.230 0.219 -0.367 -0.021 100/(260) 6.109 1.307 -0.270 -2.037 -0.118
012/(348) 1.408 0.276 0.261 -0.440 -0.025 102/(258) 6.051 1.298 -0.313 -2.022 -0.117
014/(346) 1.637 0.321 0.301 -0.511 -0.029 104/(256) 5.986 1.288 -0.354 -2.004 -0.116
016/(344) 1.864 0.366 0.340 -0.583 -0.033 106/(254) 5.915 1.276 -0.394 -1.984 -0.115
018/(342) 2.088 0.410 0.376 -0.653 -0.037 108/(252) 5.836 1.262 -0.432 -1.962 -0.114
020/(340) 2.310 0.454 0.411 -0.723 -0.041 110/(250) 5.751 1.247 -0.468 -1.937 -0.112
022/(338) 2.527 0.497 0.444 -0.791 -0.045 112/(248) 5.660 1.230 -0.501 -1.910 -0.111
024/(336) 2.741 0.540 0.475 -0.859 -0.049 114/(246) 5.562 1.212 -0.533 -1.881 -0.109
026/(334) 2.951 0.582 0.504 -0.926 -0.052 116/(244) 5.458 1.193 -0.562 -1.850 -0.107
028/(332) 3.157 0.623 0.529 -0.991 -0.056 118/(242) 5.348 1.172 -0.589 -1.816 -0.106
030/(330) 3.358 0.663 0.553 -1.055 -0.060 120/(240) 5.233 1.149 -0.613 -1.780 -0.103
032/(328) 3.554 0.703 0.573 -1.118 -0.063 122/(238) 5.111 1.125 -0.633 -1.742 -0.101
034/(326) 3.746 0.742 0.591 -1.179 -0.067 124/(236) 4.985 1.100 -0.651 -1.702 -0.099
036/(324) 3.931 0.780 0.605 -1.239 -0.070 126/(234) 4.853 1.074 -0.666 -1.660 -0.097
038/(322) 4.111 0.817 0.617 -1.297 -0.074 128/(232) 4.716 1.046 -0.678 -1.616 -0.094
040/(320) 4.285 0.853 0.625 -1.354 -0.077 130/(230) 4.575 1.017 -0.687 -1.570 -0.092
042/(318) 4.454 0.888 0.631 -1.409 -0.080 132/(228) 4.428 0.986 -0.692 -1.522 -0.089
044/(316) 4.615 0.922 0.633 -1.462 -0.083 134/(226) 4.277 0.955 -0.695 -1.473 -0.086
046/(314) 4.770 0.955 0.632 -1.513 -0.086 136/(224) 4.122 0.922 -0.693 -1.422 -0.083
048/(312) 4.919 0.986 0.627 -1.562 -0.089 138/(222) 3.963 0.888 -0.689 -1.369 -0.080
050/(310) 5.061 1.017 0.620 -1.609 -0.092 140/(220) 3.799 0.853 -0.682 -1.314 -0.077
052/(308) 5.195 1.046 0.609 -1.655 -0.094 142/(218) 3.632 0.817 -0.671 -1.258 -0.074
054/(306) 5.323 1.074 0.596 -1.698 -0.097 144/(216) 3.462 0.780 -0.657 -1.201 -0.070
056/(304) 5.443 1.100 0.579 -1.739 -0.099 146/(214) 3.288 0.742 -0.640 -1.142 -0.067
058/(302) 5.555 1.125 0.559 -1.778 -0.101 148/(212) 3.111 0.703 -0.620 -1.082 -0.063
060/(300) 5.660 1.149 0.537 -1.815 -0.103 150/(210) 2.931 0.663 -0.596 -1.020 -0.060
062/(298) 5.757 1.172 0.511 -1.849 -0.106 152/(208) 2.748 0.623 -0.571 -0.958 -0.056
064/(296) 5.847 1.193 0.483 -1.881 -0.107 154/(206) 2.562 0.582 -0.542 -0.894 -0.052
066/(294) 5.929 1.212 0.453 -1.911 -0.109 156/(204) 2.375 0.540 -0.511 -0.829 -0.049
068/(292) 6.002 1.230 0.420 -1.938 -0.111 158/(202) 2.184 0.497 -0.477 -0.764 -0.045
070/(290) 6.068 1.247 0.385 -1.963 -0.112 160/(200) 1.992 0.454 -0.441 -0.697 -0.041
072/(288) 6.126 1.262 0.348 -1.985 -0.114 162/(198) 1.798 0.410 -0.404 -0.630 -0.037
074/(286) 6.176 1.276 0.309 -2.006 -0.115 164/(196) 1.603 0.366 -0.364 -0.561 -0.033
076/(284) 6.218 1.288 0.269 -2.023 -0.116 166/(194) 1.406 0.321 -0.322 -0.493 -0.029
078/(282) 6.252 1.298 0.227 -2.038 -0.117 168/(192) 1.207 0.276 -0.279 -0.423 -0.025
080/(280) 6.278 1.307 0.184 -2.051 -0.118 170/(190) 1.008 0.230 -0.235 -0.354 -0.021
082/(278) 6.296 1.314 0.140 -2.061 -0.118 172/(188) 0.807 0.185 -0.189 -0.283 -0.017
084/(276) 6.306 1.320 0.094 -2.068 -0.119 174/(186) 0.606 0.139 -0.143 -0.213 -0.012
086/(274) 6.308 1.324 0.049 -2.073 -0.119 176/(184) 0.404 0.093 -0.095 -0.142 -0.008
088/(272) 6.302 1.326 0.003 -2.075 -0.119 178/(182) 0.202 0.046 -0.048 -0.071 -0.004
090/(270) 6.289 1.327 -0.044 -2.075 -0.119 180/(180) 0.000 0.000 -0.000 -0.000 -0.000



Table 42: Dates and fractional Julian day numbers of the first new moons of the years 1900-2099 CE.
01/1/1900 2415021.07 18/1/1950 2433299.83 06/1/2000 2451550.25 23/1/2050 2469829.70
20/1/1901 2415405.10 07/1/1951 2433654.33 24/1/2001 2451934.05 12/1/2051 2470184.29
09/1/1902 2415759.37 26/1/1952 2434038.42 13/1/2002 2452288.07 02/1/2052 2470538.61
28/1/1903 2416143.18 15/1/1953 2434393.09 02/1/2003 2452642.34 19/1/2053 2470922.45
17/1/1904 2416497.16 05/1/1954 2434747.59 21/1/2004 2453026.37 08/1/2054 2471276.44
05/1/1905 2416851.26 24/1/1955 2435131.53 10/1/2005 2453381.00 27/1/2055 2471660.25
24/1/1906 2417235.21 13/1/1956 2435485.62 29/1/2006 2453765.09 16/1/2056 2472014.42
14/1/1907 2417589.74 01/1/1957 2435839.60 19/1/2007 2454119.66 05/1/2057 2472368.90
03/1/1908 2417944.40 19/1/1958 2436223.43 08/1/2008 2454473.97 24/1/2058 2472753.00
22/1/1909 2418328.50 09/1/1959 2436577.73 26/1/2009 2454857.81 14/1/2059 2473107.66
11/1/1910 2418682.98 28/1/1960 2436961.75 15/1/2010 2455211.80 03/1/2060 2473462.19
30/1/1911 2419066.89 16/1/1961 2437316.39 04/1/2011 2455565.88 21/1/2061 2473846.12
19/1/1912 2419420.95 06/1/1962 2437671.03 23/1/2012 2455949.82 10/1/2062 2474200.23
07/1/1913 2419774.94 25/1/1963 2438055.06 11/1/2013 2456304.31 29/1/2063 2474584.01
26/1/1914 2420158.78 14/1/1964 2438409.35 01/1/2014 2456658.97 18/1/2064 2474938.03
15/1/1915 2420513.10 02/1/1965 2438763.37 20/1/2015 2457043.05 06/1/2065 2475292.30
05/1/1916 2420867.69 21/1/1966 2439147.16 10/1/2016 2457397.56 25/1/2066 2475676.33
23/1/1917 2421251.81 10/1/1967 2439501.26 27/1/2017 2457781.49 15/1/2067 2476030.96
12/1/1918 2421606.44 29/1/1968 2439885.18 17/1/2018 2458135.58 05/1/2068 2476385.61
02/1/1919 2421960.84 18/1/1969 2440239.70 06/1/2019 2458489.57 23/1/2069 2476769.64
21/1/1920 2422344.71 07/1/1970 2440594.36 24/1/2020 2458873.41 12/1/2070 2477123.96
09/1/1921 2422698.72 26/1/1971 2440978.45 13/1/2021 2459227.70 01/1/2071 2477478.00
28/1/1922 2423082.50 16/1/1972 2441332.94 02/1/2022 2459582.26 20/1/2072 2477861.78
17/1/1923 2423436.61 04/1/1973 2441687.14 21/1/2023 2459966.36 08/1/2073 2478215.85
06/1/1924 2423791.03 23/1/1974 2442070.95 11/1/2024 2460321.00 27/1/2074 2478599.77
24/1/1925 2424175.10 12/1/1975 2442424.94 29/1/2025 2460705.02 16/1/2075 2478954.26
14/1/1926 2424529.77 01/1/1976 2442779.11 18/1/2026 2461059.31 06/1/2076 2479308.92
03/1/1927 2424884.35 19/1/1977 2443163.08 07/1/2027 2461413.34 24/1/2077 2479693.03
22/1/1928 2425268.33 09/1/1978 2443517.66 26/1/2028 2461797.14 14/1/2078 2480047.54
11/1/1929 2425622.50 28/1/1979 2443901.76 14/1/2029 2462151.23 03/1/2079 2480401.77
29/1/1930 2426006.29 17/1/1980 2444256.39 04/1/2030 2462505.61 22/1/2080 2480785.57
18/1/1931 2426360.28 06/1/1981 2444610.80 23/1/2031 2462889.67 10/1/2081 2481139.55
07/1/1932 2426714.48 25/1/1982 2444994.69 12/1/2032 2463244.33 28/1/2082 2481523.38
25/1/1933 2427098.46 14/1/1983 2445348.71 01/1/2033 2463598.93 18/1/2083 2481877.65
15/1/1934 2427453.06 03/1/1984 2445702.73 20/1/2034 2463982.91 07/1/2084 2482232.21
05/1/1935 2427807.72 21/1/1985 2446086.61 09/1/2035 2464337.11 25/1/2085 2482616.33
24/1/1936 2428191.80 10/1/1986 2446441.01 28/1/2036 2464720.92 15/1/2086 2482970.97
12/1/1937 2428546.18 29/1/1987 2446825.06 16/1/2037 2465074.91 04/1/2087 2483325.41
01/1/1938 2428900.28 19/1/1988 2447179.72 05/1/2038 2465429.07 23/1/2088 2483709.30
20/1/1939 2429284.06 07/1/1989 2447534.31 24/1/2039 2465813.06 11/1/2089 2484063.34
09/1/1940 2429638.09 26/1/1990 2447918.30 14/1/2040 2466167.63 30/1/2090 2484447.11
27/1/1941 2430021.96 15/1/1991 2448272.48 02/1/2041 2466522.30 19/1/2091 2484801.19
16/1/1942 2430376.39 04/1/1992 2448626.47 21/1/2042 2466906.36 09/1/2092 2485155.56
06/1/1943 2430731.02 22/1/1993 2449010.28 11/1/2043 2467260.77 27/1/2093 2485539.63
25/1/1944 2431115.14 11/1/1994 2449364.46 30/1/2044 2467644.65 16/1/2094 2485894.29
14/1/1945 2431469.71 01/1/1995 2449718.95 18/1/2045 2467998.68 06/1/2095 2486248.90
03/1/1946 2431824.00 20/1/1996 2450103.02 07/1/2046 2468352.69 25/1/2096 2486632.90
22/1/1947 2432207.84 09/1/1997 2450457.68 26/1/2047 2468736.58 13/1/2097 2486987.11
11/1/1948 2432561.83 28/1/1998 2450841.75 15/1/2048 2469090.97 02/1/2098 2487341.11
29/1/1949 2432945.62 17/1/1999 2451196.14 04/1/2049 2469445.59 21/1/2099 2487724.89



Table 43: Lunar-solar eclipse functions. The arguments of $\delta\beta_1$, $\delta\beta_2$, and $\delta\beta_3$ are $M_M$, $M_M$, and $M_S$, respectively. $\delta\beta_1$, $\delta\beta_2$, and $\delta\beta_3$ take minus the values shown in the table if their arguments are in parenthesies.
Arg. ($^\circ$) $\delta\beta_1(')$ $\delta\beta_2(')$ $\delta\beta_3(')$ Arg. ($^\circ$)
000/360 3.128 0.856 0.267 (180)/(180)
002/358 3.126 0.855 0.267 (178)/(182)
004/356 3.120 0.854 0.267 (176)/(184)
006/354 3.111 0.851 0.266 (174)/(186)
008/352 3.097 0.847 0.265 (172)/(188)
010/350 3.080 0.843 0.263 (170)/(190)
012/348 3.059 0.837 0.261 (168)/(192)
014/346 3.035 0.830 0.259 (166)/(194)
016/344 3.007 0.822 0.257 (164)/(196)
018/342 2.975 0.814 0.254 (162)/(198)
020/340 2.939 0.804 0.251 (160)/(200)
022/338 2.900 0.793 0.248 (158)/(202)
024/336 2.857 0.782 0.244 (156)/(204)
026/334 2.811 0.769 0.240 (154)/(206)
028/332 2.762 0.755 0.236 (152)/(208)
030/330 2.709 0.741 0.231 (150)/(210)
032/328 2.652 0.726 0.227 (148)/(212)
034/326 2.593 0.709 0.222 (146)/(214)
036/324 2.530 0.692 0.216 (144)/(216)
038/322 2.465 0.674 0.211 (142)/(218)
040/320 2.396 0.655 0.205 (140)/(220)
042/318 2.324 0.636 0.199 (138)/(222)
044/316 2.250 0.615 0.192 (136)/(224)
046/314 2.173 0.594 0.186 (134)/(226)
048/312 2.093 0.573 0.179 (132)/(228)
050/310 2.010 0.550 0.172 (130)/(230)
052/308 1.926 0.527 0.165 (128)/(232)
054/306 1.838 0.503 0.157 (126)/(234)
056/304 1.749 0.478 0.149 (124)/(236)
058/302 1.657 0.453 0.142 (122)/(238)
060/300 1.564 0.428 0.134 (120)/(240)
062/298 1.468 0.402 0.125 (118)/(242)
064/296 1.371 0.375 0.117 (116)/(244)
066/294 1.272 0.348 0.109 (114)/(246)
068/292 1.172 0.321 0.100 (112)/(248)
070/290 1.070 0.293 0.091 (110)/(250)
072/288 0.967 0.264 0.083 (108)/(252)
074/286 0.862 0.236 0.074 (106)/(254)
076/284 0.757 0.207 0.065 (104)/(256)
078/282 0.650 0.178 0.056 (102)/(258)
080/280 0.543 0.149 0.046 (100)/(260)
082/278 0.435 0.119 0.037 (098)/(262)
084/276 0.327 0.089 0.028 (096)/(264)
086/274 0.218 0.060 0.019 (094)/(266)
088/272 0.109 0.030 0.009 (092)/(268)
090/270 0.000 0.000 0.000 (090)/(270)



next up previous
Next: The Superior Planets Up: Lunar-Solar Syzygies and Eclipses Previous: Example Eclipse Calculations
Richard Fitzpatrick 2010-07-21