Reduced Neoclasssical Drift-MHD Model

The Alfvén speed, $V_A$, and the collisionless ion skin-depth, $d_i$, are defined in Equations (4.23) and (4.24), respectively. Let $l$ be a typical variational lengthscale in the inner region. It is convenient to adopt the following normalization scheme that renders all quantities in the neoclassical drift-MHD fluid equations dimensionless: $\hat{\nabla} = l\,\nabla$, $\hat{t} = t/(l/V_A)$, $\hat{d}_i = d_i/l$, $\hat{\bf E}= {\bf E}/(B_z\,V_A)$, $\hat{\bf j} = {\bf j}/(B_z/\mu_0\,l)$, $\hat{j}_{bs} = j_{bs}/(B_z/\mu_0\,l)$, $\hat{j}_{nc\,e,i} = j_{nc\,e,i}/(B_z/\mu_0\,l)$, $\hat{p}=p/(B_z^{\,2}/\mu_0)$, $\hat{p}_0= p_0/(B_z^{\,2}/\mu_0)$, $\hat{\bf V} = {\bf V}/V_A$, $\hat{\bf V}_{\ast,i,E} = {\bf V}_{\ast,i,E}/V_A$, $\hat{V}_\parallel = V_{\parallel\,i}/V_A$, $\hat{x}= (r-r_s)/l$, $\hat{\mit\Xi}_{\theta}= l/(V_A\,\tau_\theta)$, $\hat{\mit\Xi}_\perp = {\mit\Xi}_\perp/(l\,V_A)$, $\hat{\eta}_{\parallel,\perp,\parallel\,e}=\eta_{\parallel,\perp,\parallel\,e}/(\mu_0\,l\,V_A)$, $\hat{\chi}_{\parallel,\perp}= \chi_{\parallel,\perp}/(l\,V_A)$. Here, $V_{\parallel\,i}$ is the ion parallel fluid velocity [see Equation (2.321)]. Equations (11.1)–(11.3) yield the following set of normalized neoclassical drift-MHD fluid equations:

$\displaystyle \frac{\partial \hat{\bf V}}{\partial\hat{t}}+\hat{\nabla}\left(\f...
...t{\bf V}_\ast)-\hat{\bf V}_\ast\times (\hat{\nabla}\times
\hat{\bf V}_E)\right.$    
$\displaystyle \left. + (\hat{\nabla}\cdot\hat{\bf V}_E)\,\hat{\bf V}_\ast- (\ha...
...E\times\hat{\bf V}_\ast)\right]
+\hat{\nabla}\hat{p} -\hat{\bf j}\times {\bf b}$    
$\displaystyle +\hat{\mit\Xi}_\theta\left(\hat{\bf V}_i-\alpha_\theta\,\frac{1}{...
...bf V}_i^\dag - \frac{2}{3}\,\hat{\nabla}\cdot\hat{\bf V}_i\,{\bf I}\right) = 0,$ (11.16)
$\displaystyle \hat{\bf E} +\hat{\bf V}\times {\bf b} +\hat{d}_i\left[\hat{\nabl...
...abla}\hat{p})+\hat{\eta}_\parallel\,(\hat{j}_\parallel -\hat{j}_{bs})\,{\bf b},$ (11.17)
$\displaystyle \frac{3}{2}\,\frac{\partial\hat{p}}{\partial\hat{t}}+\frac{3}{2}\...
...hat{j}_{bs}+\frac{\hat{E}_\parallel}{\hat{\eta}_\parallel}\right){\bf b}\right]$    
$\displaystyle -\frac{\tau'}{1+\tau'}\,\hat{d}_i\,\hat{p}_0\,\hat{\nabla}\cdot\l...
...({\bf b}\cdot\hat{\nabla}\hat{p})
-\hat{\chi}_\perp\,\hat{\nabla}^2\hat{p} = 0,$ (11.18)

where

$\displaystyle \hat{j}_{bs}$ $\displaystyle = -\alpha_{bs}\,\frac{\partial\hat{p}}{\partial\hat{x}},$ (11.19)
$\displaystyle \hat{j}_{nc\,e,i}$ $\displaystyle = -\alpha_{nc\,e,i}\,\frac{\partial\hat{p}}{\partial\hat{x}},$ (11.20)
$\displaystyle \hat{\bf V}_E$ $\displaystyle = \hat{\bf E}\times {\bf b},$ (11.21)
$\displaystyle \hat{\bf V}_\ast$ $\displaystyle = \hat{d}_i\,{\bf b}\times \hat{\nabla}\hat{p},$ (11.22)
$\displaystyle \hat{\bf V}$ $\displaystyle = \hat{\bf V}_E + \hat{V}_\parallel\,{\bf b},$ (11.23)
$\displaystyle \hat{\bf V}_i$ $\displaystyle = \hat{\bf V} + \frac{1}{1+\tau}\,\hat{\bf V}_\ast.$ (11.24)

Finally, Maxwell's equations yield

$\displaystyle \hat{\nabla}\cdot{\bf b}$ $\displaystyle =0,$ (11.25)
$\displaystyle \hat{\nabla}\times \hat{\bf E}$ $\displaystyle = - \frac{\partial{\bf b}}{\partial \hat{t}},$ (11.26)
$\displaystyle \hat{\bf j}$ $\displaystyle =\hat{\nabla}\times {\bf b}.$ (11.27)

As before (see Section 4.4), all quantities in the inner region are assumed to be functions of $\hat{x}$, $\zeta=m\,\theta-n\,\varphi$, and $\hat{t}$ only. Here, $\theta$ and $\varphi $ are the poloidal and toroidal angles, respectively, whereas $m$ and $n$ are the poloidal and toroidal mode numbers, respectively, of the tearing mode. (See Sections 3.2 and 3.3.) We can write

$\displaystyle \hat{p}$ $\displaystyle = \hat{p}_0 +\delta p^{(1)},$ (11.28)
$\displaystyle {\bf b}$ $\displaystyle = \left(1+\delta b^{(1)}\right){\bf n} + \hat{\nabla}\times\left(\psi^{(1)}\,{\bf n}\right),$ (11.29)
$\displaystyle \hat{\bf E}$ $\displaystyle =\hat{\nabla}\phi^{(1)}+\left(\hat{E}_\parallel^{(2)} - \frac{\pa...
...}\times\left(
\frac{\partial^{(1)}\chi^{(1)}}{\partial\hat{t}}\,{\bf n}\right),$ (11.30)
$\displaystyle \hat{\bf V}_E$ $\displaystyle = \hat{\nabla}\phi^{(1)}\times {\bf b} -\hat{\nabla}\left(\frac{\partial^{(1)}\chi^{(1)}}{\partial\hat{t}}\right),$ (11.31)
$\displaystyle \hat{\bf V}_\ast$ $\displaystyle = \hat{d}_i\,{\bf b}\times \hat{\nabla}\delta p^{(1)},$ (11.32)
$\displaystyle \hat{\bf V}$ $\displaystyle = \hat{\bf V}_E + \hat{V}_\parallel^{(1)}\,{\bf b} +\hat{\nabla}{\mit\Upsilon}^{(2)},$ (11.33)
$\displaystyle \hat{\bf V}_i$ $\displaystyle = \hat{\bf V} +\frac{1}{1+\tau}\,\hat{\bf V}_\ast,$ (11.34)

where ${\bf n}$ is defined in Equation (4.37), $\hat{E}_\parallel^{(2)}$ is the (normalized) constant inductive component of the parallel electric field that maintains the equilibrium parallel current density in the inner region against ohmic decay, and $\hat{\nabla}^2\chi^{(1)} =\delta b^{(1)}$. The superscript $(1)$ indicates a quantity that is first order in our ordering scheme. Zeroth order terms are left without superscripts, whereas second order terms are given the superscript (2).

Evaluating the normalized neoclassical drift-MHD fluid equations, (11.16)–(11.18), up to second order, we obtain

$\displaystyle \hat{\nabla}\left(\delta p^{(1)}+ \delta b^{(1)}\right)+\left(\fr...
...l^{(1)},\phi^{(1)}\right] +\left[\psi^{(1)},\delta b^{(1)}\right]\right){\bf n}$    
$\displaystyle +\hat{\nabla}\left(\frac{\partial^{(1)}\phi^{(1)}}{\partial\hat{t...
... b^{(1)}\,\delta b^{(1)}+\frac{2\,\epsilon^{(1)}\,\epsilon^{(1)}}{q_s^2}\right)$    
$\displaystyle -\hat{\nabla}^2\phi^{(1)}\,\hat{\nabla}\phi^{(1)}+\frac{\hat{d}_i...
...2\delta p^{(1)}\,\hat{\nabla}\phi^{(1)}\right)+ J^{(1)}\,\hat{\nabla}\psi^{(1)}$    
$\displaystyle +\hat{\mit\Xi}_\theta^{(1)}\left(\frac{\epsilon^{(1)}}{q_s}\,\hat...
...t)
{\bf e}_\theta
- {\mit\Xi}_{\perp}^{(1)}\,\hat{\nabla}^{2}{\bf V}_i^{(1)}=0,$ (11.35)
$\displaystyle \hat{d}_i\,\hat{\nabla}\left(\delta p^{(1)}+ \delta b^{(1)}\right)$    
$\displaystyle +\left(\hat{E}_\parallel^{(2)}-\frac{\partial^{(1)}\psi^{(1)}}{\p...
...(1)}\,\alpha_{bs}\,\frac{\partial\delta p^{(1)}}{\partial\hat{x}}\right){\bf n}$    
$\displaystyle +\hat{\nabla}\left[{\mit\Upsilon}^{(2)}-\hat{\eta}_\perp^{(1)}\,(...
... b^{(1)}\,\delta b^{(1)}+\frac{2\,\epsilon^{(1)}\,\epsilon^{(1)}}{q_s^2}\right)$    
$\displaystyle +\hat{d}_i\,J^{(1)}\,\hat{\nabla}\psi^{(1)}-2\,\delta b^{(1)}\,\hat{\nabla}\phi^{(1)}=0,$ (11.36)
$\displaystyle \frac{3}{2}\,\frac{\partial^{(1)}\delta p^{(1)}}{\partial\hat{t}}...
...{V}_\parallel^{(1)},\psi^{(1)}\right]+\hat{\nabla}^2{\mit\Upsilon}^{(2)}\right)$    
$\displaystyle +\frac{5}{2}\,\lambda\,\hat{p}_0\,\hat{d}_i\,[\delta p^{(1)},\del...
...{(1)}}\left[\frac{\partial^{(1)}\psi^{(1)}}{\partial \hat{t}},\psi^{(1)}\right]$    
$\displaystyle -\hat{\chi}_\parallel^{(-1)}\left[\left[\delta p^{(1)},\psi^{(1)}\right],\psi^{(1)}\right]-\hat{\chi}_\perp^{(1)}\,\hat{\nabla}^2\delta p^{(1)}=0,$ (11.37)

where $J^{(1)}$ is defined in Equation (4.49), $[A,B]\equiv \hat{\nabla}A\times \hat{\nabla}B\cdot{\bf n}$, and

$\displaystyle \alpha_{nc}$ $\displaystyle = \frac{\tau'}{1+\tau'}\,\alpha_{bs} + \frac{2}{5}\,\frac{\tau'}{1+\tau'}\,\alpha_{nc\,e} + \frac{1}{1+\tau'}\,\alpha_{nc\,i},$ (11.38)
$\displaystyle \alpha_\parallel$ $\displaystyle = \frac{\tau'}{1+\tau'}\left(1+\frac{2}{5}\,\frac{\hat{\eta}_\parallel}{\hat{\eta}_{\parallel\,e}}\right).$ (11.39)

To first order, Equations (11.35) and (11.36) again give the equilibrium force balance constraint

$\displaystyle \delta b^{(1)} = -\delta p ^{(1)}.$ (11.40)

(See Section 4.4.) The scalar product of Equation (11.35) with ${\bf n}$ yields

$\displaystyle \frac{\partial^{(1)}\hat{V}_\parallel^{(1)}}{\partial\hat{t}}$ $\displaystyle =\left[\phi^{(1)},\hat{V}_\parallel^{(1)}\right] -\left[\delta p^{(1)},\psi^{(1)}\right]$ (11.41)
  $\displaystyle \phantom{=}-\hat{\mit\Xi}_\theta^{(1)}\,\frac{\epsilon^{(1)}}{q_s...
...ght]
\right) +\hat{\mit\Xi}_\perp^{(1)}\,\hat{\nabla}^2\hat{V}_\parallel^{(1)}.$    

The scalar product of Equation (11.36) with ${\bf n}$ gives

$\displaystyle \frac{\partial^{(1)}\psi^{(1)}}{\partial \hat{t}}= \left[\phi^{(1...
..._{bs}\,\frac{\delta p^{(1)}}{\partial\hat{x}}\right) + \hat{E}_\parallel^{(2)}.$ (11.42)

The scalar product of the curl of Equation (11.35) with ${\bf n}$ yields

$\displaystyle \frac{\partial^{(1)}\, \hat{\nabla}^2\phi^{(1)}}{\partial\hat{t}}$ $\displaystyle = \left[\phi^{(1)}, \hat{\nabla}^2\phi^{(1)}\right]+\frac{\hat{d}...
...ta p ^{(1)}\right]
+\left[\hat{\nabla}^2\delta p^{(1)},\phi^{(1)}\right]\right)$    
  $\displaystyle \phantom{=} +\left[J^{(1)},\psi^{(1)}\right]+ \hat{\mit\Xi}_\thet...
...ft(1-\alpha_\theta\,\frac{\eta_i}{1+\eta_i}\right)\delta p^{(1)}\right]
\right)$    
  $\displaystyle \phantom{=}+ \hat{\mit\Xi}_\perp^{(1)}\,\hat{\nabla}^4\left(
\phi^{(1)}-\frac{\hat{d}_i}{1+\tau}\,\delta p^{(1)}\right).$ (11.43)

Finally, the scalar product of the curl of Equation (11.36) with ${\bf n}$ gives

$\displaystyle \hat{\nabla}^2{\mit\Upsilon}^{(2)} = 2\left[\delta p^{(1)}, \phi^{(1)}\right] +\hat{d}_i\left[J^{(1)}, \psi^{(1)}\right].$ (11.44)

The previous equation can be combined with Equations (11.37) and (11.40) to produce

$\displaystyle \frac{\partial^{(1)}\delta p^{(1)}}{\partial \hat{t}}$ $\displaystyle = \left[\phi^{(1)},\delta p^{(1)}\right]
-c_\beta^{\,2}\left[\hat...
...t[\alpha_{nc}\,\frac{\partial\delta p^{(1)}}{\partial\hat{x}},\psi^{(1)}\right]$ (11.45)
  $\displaystyle \phantom{=}
-c_\beta^{\,2}\,\hat{d}_i\left[\frac{\alpha_{\paralle...
...2}{3}\,(1-c_\beta^2)\,\hat{\chi}_\perp^{(1)}\,\hat{\nabla}^{\,2}\delta p^{(1)},$    

where $c_\beta$ is defined in Equations (4.65) and (4.66).

Our final reduced neoclassical drift-MHD model takes the form [7,8,10]

$\displaystyle \frac{\partial\psi}{\partial\hat{t}}$ $\displaystyle = \left[\phi,\psi\right] +\hat{d}_i\,\frac{\tau}{1+\tau}\left[\de...
...lpha_{bs}\,\frac{\partial\delta p}{\partial\hat{x}}\right) + \hat{E}_\parallel,$ (11.46)
$\displaystyle \frac{\partial\delta p}{\partial \hat{t}}$ $\displaystyle = \left[\phi,\delta p\right]
-c_\beta^{\,2}\left[\hat{V}_{\parall...
...el}}{\hat{\eta}_{\parallel}}\,\frac{\partial\psi}{\partial\hat{t}}, \psi\right]$    
  $\displaystyle \phantom{=}
+\frac{2}{3}\,(1-c_\beta^2)\,\hat{\chi}_\parallel\lef...
...ht] + \frac{2}{3}\,(1-c_\beta^2)\,\hat{\chi}_\perp\,\hat{\nabla}^{\,2}\delta p,$ (11.47)
$\displaystyle \frac{\partial U}{\partial \hat{t}}$ $\displaystyle = \left[\phi, U\right]+\frac{\hat{d}_i}{2\,(1+\tau)}
\left(\hat{\...
...right]+\left[U,\delta p\right]
+\left[\hat{\nabla}^2\delta p,\phi\right]\right)$    
  $\displaystyle \phantom{=} +\left[J,\psi\right]+ \hat{\mit\Xi}_\theta\,\frac{\pa...
...au}\left(1-\alpha_\theta\,\frac{\eta_i}{1+\eta_i}\right)\delta p\right]
\right)$    
  $\displaystyle \phantom{=}+ \hat{\mit\Xi}_\perp\,\hat{\nabla}^4\left(
\phi-\frac{\hat{d}_i}{1+\tau}\,\delta p\right),$ (11.48)
$\displaystyle \frac{\partial\hat{V}_\parallel}{\partial\hat{t}}$ $\displaystyle =\left[\phi,\hat{V}_\parallel\right] -\left[\delta p,\psi\right]-...
...au}\left(1-\alpha_\theta\,\frac{\eta_i}{1+\eta_i}\right)\delta p\right]
\right)$    
  $\displaystyle \phantom{=}+\hat{\mit\Xi}_\perp\,\hat{\nabla}^2\hat{V}_\parallel,$ (11.49)

where

$\displaystyle J$ $\displaystyle = -\frac{2\,\epsilon_s}{q_s}\,+\hat{\nabla}^2\psi,$ (11.50)
$\displaystyle U$ $\displaystyle =\hat{\nabla}^2 \phi.$ (11.51)

Here, we have suppressed the ordering superscripts. If we compare Equations (11.46)–(11.51), to our previous reduced non-neoclassical drift-MHD equations, (4.67)–(4.74), then we can see that the former set of equations contain many additional terms. The additional term involving the parameter $\alpha_{bs}$ in Equation (11.46) is due to the bootstrap current. The additional terms involving the parameters $\alpha_{nc}$ and $\alpha_\parallel$ in Equation (11.47) are due to neoclassical parallel momentum and heat fluxes. Finally, the additional terms involving the parameter ${\mit\Xi}_\theta$ in Equations (11.48) and (11.49) are due to neoclassical poloidal flow damping.