next up previous
Next: Sliding down a Sliding Up: Lagrangian Dynamics Previous: Motion in a Central

Atwood Machines

An Atwood machine consists of two weights, of mass $m_1$ and $m_2$, connected by a light inextensible cord of length $l$, which passes over a pulley of radius $a\ll l$, and moment of inertia $I$. See Figure 32.

Figure 32: An Atwood machine.
\begin{figure}
\epsfysize =3in
\centerline{\epsffile{Chapter09/fig9.01.eps}}
\end{figure}

Referring to the diagram, we can see that this is a one degree of freedom system whose instantaneous configuration is specified by the coordinate $x$. Assuming that the cord does not slip with respect to the pulley, the angular velocity of pulley is $\dot{x}/a$. Hence, the kinetic energy of the system is given by

\begin{displaymath}
K = \frac{1}{2}\,m_1\,\dot{x}^{\,2} + \frac{1}{2}\,m_2\,\dot{x}^{\,2}
+ \frac{1}{2}\,I\, \frac {\dot{x}^{\,2}}{a^2}.
\end{displaymath} (624)

The potential energy of the system takes the form
\begin{displaymath}
U = -m_1\,g\,x - m_2\,g\,(l-x).
\end{displaymath} (625)

It follows that the Lagrangian is written
\begin{displaymath}
L=\frac{1}{2}\left(m_1+ m_2+\frac{I}{a^2}\right)\dot{x}^{\,2} + g\,(m_1-m_2)\,x + {\rm const}.
\end{displaymath} (626)

The equation of motion,
\begin{displaymath}
\frac{d}{dt}\!\left(\frac{\partial L}{\partial\dot{x}}\right) - \frac{\partial L}{\partial x} = 0,
\end{displaymath} (627)

thus yields
\begin{displaymath}
\left(m_1+ m_2+\frac{I}{a^2}\right)\ddot{x} - g\,(m_1-m_2) = 0,
\end{displaymath} (628)

or
\begin{displaymath}
\ddot{x} = \frac{g\,(m_1-m_2)}{m_1+m_2 + I/a^2},
\end{displaymath} (629)

which is the correct answer.

Figure 33: A double Atwood machine.
\begin{figure}
\epsfysize =3.25in
\centerline{\epsffile{Chapter09/fig9.02.eps}}
\end{figure}

Consider the dynamical system drawn in Figure 33. This is an Atwood machine in which one of the weights has been replaced by a second Atwood machine with a cord of length $l'$. The system now has two degrees of freedom, and its instantaneous position is specified by the two coordinates $x$ and $x'$, as shown.

For the sake of simplicity, let us neglect the masses of the two pulleys. Thus, the kinetic energy of the system is written

\begin{displaymath}
K = \frac{1}{2}\,m_1\,\dot{x}^{\,2} + \frac{1}{2}\,m_2\,(-\dot{x}+ \dot{x}')^2 + \frac{1}{2}\,m_3\,(-\dot{x} - \dot{x}')^2,
\end{displaymath} (630)

whereas the potential energy takes the form
\begin{displaymath}
U = - m_1\,g\,x - m_2\,g\,(l-x+x')- m_3\,g\,(l-x+l'-x').
\end{displaymath} (631)

It follows that the Lagrangian of the system is
$\displaystyle L$ $\textstyle =$ $\displaystyle \frac{1}{2}\,m_1\,\dot{x}^{\,2} + \frac{1}{2}\,m_2\,(-\dot{x}+ \dot{x}')^2 + \frac{1}{2}\,m_3\,(-\dot{x} - \dot{x}')^2$  
    $\displaystyle + g\,(m_1-m_2-m_3)\,x+g\,(m_2-m_3)\,x' + {\rm const}.$ (632)

Hence, the equations of motion,
$\displaystyle \frac{d}{dt}\!\left(\frac{\partial L}{\partial\dot{x}}\right) - \frac{\partial L}{\partial x}$ $\textstyle =$ $\displaystyle 0,$ (633)
$\displaystyle \frac{d}{dt}\!\left(\frac{\partial L}{\partial\dot{x}'}\right) - \frac{\partial L}{\partial x'}$ $\textstyle =$ $\displaystyle 0,$ (634)

yield
$\displaystyle m_1\,\ddot{x} + m_2\,(\ddot{x}- \ddot{x}') + m_3\,(\ddot{x}+\ddot{x}')
- g\,(m_1-m_2-m_3)$ $\textstyle =$ $\displaystyle 0,$ (635)
$\displaystyle m_2\,(-\ddot{x} + \ddot{x}')+m_3\,(\ddot{x}+\ddot{x}') - g\,(m_2-m_3)$ $\textstyle =$ $\displaystyle 0.$ (636)

The accelerations $\ddot{x}$ and $\ddot{x}'$ can be obtained from the above two equations via simple algebra.


next up previous
Next: Sliding down a Sliding Up: Lagrangian Dynamics Previous: Motion in a Central
Richard Fitzpatrick 2011-03-31