next up previous
Next: The mean, variance, and Up: Probability theory Previous: Combinatorial analysis

The binomial distribution

It follows from Eqs. (16) and (20) that the probability of obtaining $n_1$ occurrences of the outcome 1 in $N$ statistically independent observations of a two-state system is
\begin{displaymath}
P_N(n_1) = \frac{N!}{n_1 !\,(N-n_1)!} \,p^{n_1}\,q^{N-n_1}.
\end{displaymath} (21)

This probability function is called the binomial distribution function. The reason for this is obvious if we tabulate the probabilities for the first few possible values of $N$ (see Tab. 1).

Table 1: The binomial probability distribution
        $n_1$    
    0 1 2 3 4
  1 $q$ $p$      
$N$ 2 $q^2$ $2\,p\,q$ $p^2$    
  3 $q^3$ $3\,p\,q^2$ $3\,p^2\,q$ $p^3$  
  4 $q^4$ $4\,p\,q^3$ $6\,p^2\,q^2$ $4\,p^3\,q$ $p^4$


Of course, we immediately recognize these expressions: they appear in the standard algebraic expansions of $(p+q)$, $(p+q)^2$, $(p+q)^3$, and $(p+q)^4$, respectively. In algebra, the expansion of $(p+q)^N$ is called the binomial expansion (hence, the name given to the probability distribution function), and can be written
\begin{displaymath}
(p+q)^N \equiv \sum_{n=0}^{N} \frac{N!}{n!\,(N-n)!}\,p^n \,q^{N-n}.
\end{displaymath} (22)

Equations (21) and (22) can be used to establish the normalization condition for the binomial distribution function:
\begin{displaymath}
\sum_{n_1=0}^N P_N(n_1) =\sum_{n_1=0}^N \frac{N!}{n_1!\,(N-n_1)!}\,p^{n_1}\,
q^{N-n_1}\equiv (p+q)^N = 1,
\end{displaymath} (23)

since $p+q=1$.


next up previous
Next: The mean, variance, and Up: Probability theory Previous: Combinatorial analysis
Richard Fitzpatrick 2006-02-02