next up previous
Next: Exercises Up: Orbital Angular Momentum Previous: Eigenvalues of


Spherical Harmonics

The simultaneous eigenstates, $Y_{l,m}(\theta,\phi)$, of $L^2$ and $L_z$ are known as the spherical harmonics. Let us investigate their functional form.

Now, we know that

\begin{displaymath}
L_+ Y_{l,l}(\theta,\phi) = 0,
\end{displaymath} (591)

since there is no state for which $m$ has a larger value than $+l$. Writing
\begin{displaymath}
Y_{l,l}(\theta,\phi) = \Theta_{l,l}(\theta) {\rm e}^{ {\rm i} l \phi}
\end{displaymath} (592)

[see Eqs. (570) and (574)], and making use of Eq. (555), we obtain
\begin{displaymath}
\hbar {\rm e}^{ {\rm i} \phi}\left(\frac{\partial}{\parti...
...ial\phi}\right)\Theta_{l,l}(\theta) {\rm e}^{ i l \phi}=0.
\end{displaymath} (593)

This equation yields
\begin{displaymath}
\frac{d\Theta_{l,l}}{d\theta} - l \cot\theta \Theta_{l,l} = 0.
\end{displaymath} (594)

which can easily be solved to give
\begin{displaymath}
\Theta_{l,l}\sim (\sin\theta)^l.
\end{displaymath} (595)

Hence, we conclude that
\begin{displaymath}
Y_{l,l}(\theta,\phi) \sim (\sin\theta)^l {\rm e}^{ {\rm i} l \phi}.
\end{displaymath} (596)

Likewise, it is easy to demonstrate that
\begin{displaymath}
Y_{l,-l}(\theta,\phi) \sim (\sin\theta)^l {\rm e}^{-{\rm i} l \phi}.
\end{displaymath} (597)

Once we know $Y_{l,l}$, we can obtain $Y_{l,l-1}$ by operating on $Y_{l,l}$ with the lowering operator $L_-$. Thus,

\begin{displaymath}
Y_{l,l-1} \sim L_- Y_{l,l} \sim {\rm e}^{-{\rm i} \phi}\le...
...tial\phi}\right) (\sin\theta)^l {\rm e}^{ {\rm i} l \phi},
\end{displaymath} (598)

where use has been made of Eq. (555). The above equation yields
\begin{displaymath}
Y_{l,l-1}\sim {\rm e}^{ {\rm i} (l-1) \phi}\left(\frac{d}{d\theta} +l \cot\theta\right)(\sin\theta)^l.
\end{displaymath} (599)

Now,
\begin{displaymath}
\left(\frac{d}{d\theta}+l \cot\theta\right)f(\theta)\equiv
...
...a)^l}\frac{d}{d\theta}\left[
(\sin\theta)^l f(\theta)\right],
\end{displaymath} (600)

where $f(\theta)$ is a general function. Hence, we can write
\begin{displaymath}
Y_{l,l-1}(\theta,\phi)\sim \frac{{\rm e}^{ {\rm i} (l-1) ...
...ac{1}{\sin\theta}\frac{d}{d\theta}\right)
(\sin\theta)^{2 l}.
\end{displaymath} (601)

Likewise, we can show that
\begin{displaymath}
Y_{l,-l+1}(\theta,\phi)\sim L_+ Y_{l,-l}\sim \frac{{\rm e}^...
...ac{1}{\sin\theta}\frac{d}{d\theta}\right)
(\sin\theta)^{2 l}.
\end{displaymath} (602)

We can now obtain $Y_{l,l-2}$ by operating on $Y_{l,l-1}$ with the lowering operator. We get

\begin{displaymath}
Y_{l,l-2}\sim L_- Y_{l,l-1}\sim {\rm e}^{-{\rm i} \phi}\le...
...ac{1}{\sin\theta}\frac{d}{d\theta}\right)
(\sin\theta)^{2 l},
\end{displaymath} (603)

which reduces to
\begin{displaymath}
Y_{l,l-2}\sim {\rm e}^{-{\rm i} (l-2) \phi}\left[\frac{d}{...
...ac{1}{\sin\theta}\frac{d}{d\theta}\right)
(\sin\theta)^{2 l}.
\end{displaymath} (604)

Finally, making use of Eq. (600), we obtain
\begin{displaymath}
Y_{l,l-2}(\theta,\phi) \sim \frac{{\rm e}^{ {\rm i} (l-2)\...
...{1}{\sin\theta}\frac{d}{d\theta}\right)^2
(\sin\theta)^{2 l}.
\end{displaymath} (605)

Likewise, we can show that
\begin{displaymath}
Y_{l,-l+2}(\theta,\phi) \sim L_+ Y_{l,-l+1}\sim \frac{{\rm ...
...{1}{\sin\theta}\frac{d}{d\theta}\right)^2
(\sin\theta)^{2 l}.
\end{displaymath} (606)

A comparison of Eqs. (596), (601), and (605) reveals the general functional form of the spherical harmonics:

\begin{displaymath}
Y_{l,m}(\theta,\phi)\sim \frac{{\rm e}^{ {\rm i} m \phi}}...
...\sin\theta}\frac{d}{d\theta}\right)^{l-m}
(\sin\theta)^{2 l}.
\end{displaymath} (607)

Here, $m$ is assumed to be non-negative. Making the substitution $u=\cos\theta$, we can also write
\begin{displaymath}
Y_{l,m}(u,\phi)\sim {\rm e}^{ {\rm i} m \phi} (1-u^2)^{-m/2}\left(\frac{d}{d u}\right)^{l-m}
(1-u^2)^l.
\end{displaymath} (608)

Finally, it is clear from Eqs. (597), (602), and (606) that
\begin{displaymath}
Y_{l,-m} \sim Y^{ \ast}_{l,m}.
\end{displaymath} (609)

Figure 18: The $\vert Y_{l,m}(\theta ,\phi )\vert^{ 2}$ plotted as a functions of $\theta $. The solid, short-dashed, and long-dashed curves correspond to $l,m=0,0$, and $1,0$, and $1,\pm 1$, respectively.
\begin{figure}
\epsfysize =3in
\centerline{\epsffile{Chapter08/fig01.eps}}
\end{figure}

We now need to normalize our spherical harmonic functions so as to ensure that

\begin{displaymath}
\oint \vert Y_{l,m}(\theta,\phi)\vert^2 d\Omega = 1.
\end{displaymath} (610)

After a great deal of tedious analysis, the normalized spherical harmonic functions are found to take the form
\begin{displaymath}
Y_{l,m}(\theta,\phi) =(-1)^m  \left[\frac{2 l+1}{4\pi} \f...
...right]^{1/2} P_{l,m}(\cos\theta) {\rm e}^{ {\rm i} m \phi}
\end{displaymath} (611)

for $m\geq 0$, where the $P_{l,m}$ are known as associated Legendre polynomials, and are written
\begin{displaymath}
P_{l,m}(u) = (-1)^{l+m} \frac{(l+m)!}{(l-m)!} \frac{(1-u^2)^{-m/2}}{2^l l!}\left(\frac{d}{du}\right)^{l-m} (1-u^2)^l
\end{displaymath} (612)

for $m\geq 0$. Alternatively,
\begin{displaymath}
P_{l,m}(u) = (-1)^{l} \frac{(1-u^2)^{m/2}}{2^l l!}\left(\frac{d}{du}\right)^{l+m} (1-u^2)^l,
\end{displaymath} (613)

for $m\geq 0$. The spherical harmonics characterized by $m<0$ can be calculated from those characterized by $m>0$ via the identity
\begin{displaymath}
Y_{l,-m} = (-1)^m Y^{ \ast}_{l,m}.
\end{displaymath} (614)

The spherical harmonics are orthonormal: i.e.,
\begin{displaymath}
\oint Y_{l',m'}^{ \ast} Y_{l,m} d\Omega = \delta_{ll'} \delta_{mm'},
\end{displaymath} (615)

and also form a complete set. In other words, any function of $\theta $ and $\phi$ can be represented as a superposition of spherical harmonics. Finally, and most importantly, the spherical harmonics are the simultaneous eigenstates of $L_z$ and $L^2$ corresponding to the eigenvalues $m \hbar$ and $l (l+1) \hbar^2$, respectively.

Figure 19: The $\vert Y_{l,m}(\theta ,\phi )\vert^{ 2}$ plotted as a functions of $\theta $. The solid, short-dashed, and long-dashed curves correspond to $l,m=2,0$, and $2,\pm 1$, and $2,\pm 2$, respectively.
\begin{figure}
\epsfysize =3in
\centerline{\epsffile{Chapter08/fig02.eps}}
\end{figure}

All of the $l=0$, $l=1$, and $l=2$ spherical harmonics are listed below:

$\displaystyle Y_{0,0}$ $\textstyle =$ $\displaystyle \frac{1}{\sqrt{4\pi}},$ (616)
$\displaystyle Y_{1,0}$ $\textstyle =$ $\displaystyle \sqrt{\frac{3}{4\pi}} \cos\theta,$ (617)
$\displaystyle Y_{1,\pm1}$ $\textstyle =$ $\displaystyle \mp \sqrt{\frac{3}{8\pi}} \sin\theta {\rm e}^{\pm{\rm i} \phi},$ (618)
$\displaystyle Y_{2,0}$ $\textstyle =$ $\displaystyle \sqrt{\frac{5}{16\pi}} (3 \cos^2\theta - 1),$ (619)
$\displaystyle Y_{2,\pm 1}$ $\textstyle =$ $\displaystyle \mp\sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta {\rm e}^{\pm{\rm i} \phi},$ (620)
$\displaystyle Y_{2,\pm 2}$ $\textstyle =$ $\displaystyle \sqrt{\frac{15}{32\pi}} \sin^2\theta {\rm e}^{\pm 2 {\rm i} \phi}.$ (621)

The $\theta $ variation of these functions is illustrated in Figs. 18 and 19.



Subsections
next up previous
Next: Exercises Up: Orbital Angular Momentum Previous: Eigenvalues of
Richard Fitzpatrick 2010-07-20