Next: Identical Particles
Up: Multi-Particle Systems
Previous: Non-Interacting Particles
Two-Particle Systems
Consider a system consisting of two particles, mass
and
,
interacting via the potential
which only depends on the
relative positions of the particles. According to Eqs. (419)
and (426), the Hamiltonian of the system is written
![\begin{displaymath}
H(x_1,x_2) = -\frac{\hbar^2}{2 m_1}\frac{\partial^2}{\part...
...^2}{2 m_2}\frac{\partial^2}{\partial x_2^{ 2}}+ V(x_1-x_2).
\end{displaymath}](img1112.png) |
(437) |
Let
![\begin{displaymath}
x' = x_1-x_2
\end{displaymath}](img1113.png) |
(438) |
be the particles' relative position, and
![\begin{displaymath}
X = \frac{m_1 x_1+m_2 x_2}{m_1+m_2}
\end{displaymath}](img1114.png) |
(439) |
the position of the center of mass.
It is easily demonstrated that
![$\displaystyle \frac{\partial}{\partial x_1} = \frac{m_1}{m_1+m_2}\frac{\partial}{\partial X} + \frac{\partial}{\partial x'},$](img1115.png) |
|
|
(440) |
![$\displaystyle \frac{\partial}{\partial x_2} = \frac{m_2}{m_1+m_2}\frac{\partial}{\partial X} - \frac{\partial}{\partial x'}.$](img1116.png) |
|
|
(441) |
Hence, when expressed in terms of the new variables,
and
,
the Hamiltonian becomes
![\begin{displaymath}
H(x',X) = -\frac{\hbar^2}{2 M} \frac{\partial^2}{\partial ...
...\hbar^2}{2 \mu}\frac{\partial^2}{\partial x'^{ 2}} + V(x'),
\end{displaymath}](img1117.png) |
(442) |
where
![\begin{displaymath}
M = m_1+ m_2
\end{displaymath}](img1118.png) |
(443) |
is the total mass of the system, and
![\begin{displaymath}
\mu = \frac{m_1 m_2}{m_1+m_2}
\end{displaymath}](img1119.png) |
(444) |
the so-called reduced mass.
Note that the total momentum of the system can be written
![\begin{displaymath}
P= -{\rm i} \hbar\left(\frac{\partial}{\partial x_1} + \fra...
...l x_2}\right) = -{\rm i} \hbar \frac{\partial}{\partial X}.
\end{displaymath}](img1120.png) |
(445) |
The fact that the Hamiltonian (442) is separable when expressed
in terms of the new coordinates [i.e.,
suggests, by analogy with the analysis
in the previous section, that the wavefunction can be factorized: i.e.,
![\begin{displaymath}
\psi(x_1,x_2,t) = \psi_{x'}(x',t) \psi_X(X,t).
\end{displaymath}](img1122.png) |
(446) |
Hence, the time-dependent Schrödinger equation (423)
also factorizes to give
![\begin{displaymath}
{\rm i} \hbar \frac{\partial\psi_{x'}}{\partial t} = -\fr...
...c{\partial^2\psi_{x'}}{\partial x'^{ 2}} + V(x') \psi_{x'},
\end{displaymath}](img1123.png) |
(447) |
and
![\begin{displaymath}
{\rm i} \hbar \frac{\partial\psi_X}{\partial t} = -\frac{\hbar^2}{2 M}\frac{\partial^2\psi_X}{\partial X^2}.
\end{displaymath}](img1124.png) |
(448) |
The above equation can be solved to give
![\begin{displaymath}
\psi_X(X,t) = \psi_{0} {\rm e}^{ {\rm i} (P' X/\hbar - E' t/\hbar)},
\end{displaymath}](img1125.png) |
(449) |
where
,
, and
are constants. It is clear, from Eqs. (445), (446), and (449), that
the total momentum of the system takes the constant value
:
i.e., momentum is conserved.
Suppose that we work in the centre of mass frame of the system, which is characterized by
. It follows that
. In this case, we can write the wavefunction of the system in the form
, where
![\begin{displaymath}
{\rm i} \hbar \frac{\partial\psi}{\partial t} = -\frac{\h...
... \mu}
\frac{\partial^2\psi}{\partial x^{ 2}} + V(x) \psi.
\end{displaymath}](img1131.png) |
(450) |
In other words, in the center of mass frame, two particles of mass
and
, moving in the potential
, are equivalent
to a single particle of mass
, moving in the potential
,
where
. This is a familiar result from classical dynamics.
Next: Identical Particles
Up: Multi-Particle Systems
Previous: Non-Interacting Particles
Richard Fitzpatrick
2010-07-20