   Next: Partial Waves Up: Scattering Theory Previous: Fundamentals

# Born Approximation

Equation (1266) is not particularly useful, as it stands, because the quantity depends on the, as yet, unknown wavefunction [see Eq. (1261)]. Suppose, however, that the scattering is not particularly strong. In this case, it is reasonable to suppose that the total wavefunction, , does not differ substantially from the incident wavefunction, . Thus, we can obtain an expression for by making the substitution in Eq. (1261). This procedure is called the Born approximation.

The Born approximation yields (1267)

Thus, is proportional to the Fourier transform of the scattering potential with respect to the wavevector .

For a spherically symmetric potential, (1268)

giving (1269)

Note that is just a function of for a spherically symmetric potential. It is easily demonstrated that (1270)

where is the angle subtended between the vectors and . In other words, is the scattering angle. Recall that the vectors and have the same length, via energy conservation.

Consider scattering by a Yukawa potential (1271)

where is a constant, and measures the range'' of the potential. It follows from Eq. (1269) that (1272)

since (1273)

Thus, in the Born approximation, the differential cross-section for scattering by a Yukawa potential is (1274)

given that (1275)

The Yukawa potential reduces to the familiar Coulomb potential as , provided that . In this limit, the Born differential cross-section becomes (1276)

Recall that is equivalent to , so the above equation can be rewritten (1277)

where is the kinetic energy of the incident particles. Of course, Eq. (1277) is the famous Rutherford scattering cross-section formula.

The Born approximation is valid provided that is not too different from in the scattering region. It follows, from Eq. (1258), that the condition for in the vicinity of is (1278)

Consider the special case of the Yukawa potential. At low energies, (i.e., ) we can replace by unity, giving (1279)

as the condition for the validity of the Born approximation. The condition for the Yukawa potential to develop a bound state is (1280)

where is negative. Thus, if the potential is strong enough to form a bound state then the Born approximation is likely to break down. In the high- limit, Eq. (1278) yields (1281)

This inequality becomes progressively easier to satisfy as increases, implying that the Born approximation is more accurate at high incident particle energies.   Next: Partial Waves Up: Scattering Theory Previous: Fundamentals
Richard Fitzpatrick 2010-07-20