Next: Harmonic Perturbations
Up: Time-Dependent Perturbation Theory
Previous: Spin Magnetic Resonance
Let us recall the analysis of Sect. 13.2. The
are the stationary orthonormal eigenstates of the time-independent
unperturbed Hamiltonian,
. Thus,
,
where the
are the unperturbed energy levels, and
. Now, in the presence of a small
time-dependent perturbation to the Hamiltonian,
, the wavefunction
of the system takes the form
![\begin{displaymath}
\psi(t)= \sum_n c_n(t) \exp(-{\rm i} \omega_n t) \psi_n,
\end{displaymath}](img2464.png) |
(1057) |
where
. The amplitudes
satisfy
![\begin{displaymath}
{\rm i} \hbar \frac{d c_n}{dt} = \sum_m H_{nm} \exp( {\rm i} \omega_{nm} t) c_m,
\end{displaymath}](img2466.png) |
(1058) |
where
and
. Finally, the probability of finding the system in the
th eigenstate
at time
is simply
![\begin{displaymath}
P_n(t)= \vert c_n(t)\vert^2
\end{displaymath}](img2469.png) |
(1059) |
(assuing that, initially,
).
Suppose that at
the system is in some initial energy eigenstate labeled
. Equation (1058) is, thus, subject to the initial condition
![\begin{displaymath}
c_n(0) = \delta_{ni}.
\end{displaymath}](img2471.png) |
(1060) |
Let us attempt a perturbative solution of Eq. (1058) using
the ratio of
to
(or
to
, to be more exact) as our expansion parameter.
Now, according to (1058), the
are constant in time in the
absence of the perturbation. Hence, the zeroth-order solution is simply
![\begin{displaymath}
c_n^{(0)} (t) = \delta_{ni}.
\end{displaymath}](img2474.png) |
(1061) |
The first-order solution is obtained, via iteration, by substituting the zeroth-order
solution into the right-hand side of Eq. (1058). Thus, we obtain
![\begin{displaymath}
{\rm i} \hbar \frac{dc_n^{(1)}}{dt} = \sum_m H_{nm} \exp(...
...{nm} t) c_m^{(0)} = H_{ni} \exp( {\rm i} \omega_{ni} t),
\end{displaymath}](img2475.png) |
(1062) |
subject to the boundary condition
. The solution to
the above equation is
![\begin{displaymath}
c_n^{(1)} = -\frac{i}{\hbar}\int_0^t H_{ni}(t') \exp( {\rm i} \omega_{ni} t') dt'.
\end{displaymath}](img2477.png) |
(1063) |
It follows that, up to first-order in our perturbation expansion,
![\begin{displaymath}
c_n(t) = \delta_{ni} -\frac{i}{\hbar}\int_0^t H_{ni}(t') \exp( {\rm i} \omega_{ni} t') dt'.
\end{displaymath}](img2478.png) |
(1064) |
Hence, the probability of finding the system in some final energy
eigenstate labeled
at time
, given that it is definitely in a different initial energy eigenstate labeled
at time
, is
![\begin{displaymath}
P_{i\rightarrow f}(t) =\vert c_f(t)\vert^2 = \left\vert -\fr...
...}(t') \exp( {\rm i} \omega_{fi} t') dt'\right\vert^{ 2}.
\end{displaymath}](img2479.png) |
(1065) |
Note, finally, that our perturbative solution is clearly only valid provided
![\begin{displaymath}
P_{i\rightarrow f}(t)\ll 1.
\end{displaymath}](img2480.png) |
(1066) |
Next: Harmonic Perturbations
Up: Time-Dependent Perturbation Theory
Previous: Spin Magnetic Resonance
Richard Fitzpatrick
2010-07-20