next up previous
Next: Quantum Dynamics Up: Position and Momentum Previous: Displacement Operators

Exercises

  1. Demonstrate that
    1. $\displaystyle [q_i, q_j]_{cl} = 0.
$

    2. $\displaystyle [p_i, p_j]_{cl} = 0.
$

    3. $\displaystyle [q_i, p_j]_{cl} = \delta_{ij}.
$

    Here, $ [\cdots,\cdots]_{cl}$ represents a classical Poisson bracket. Moreover, the $ q_i$ and $ p_i$ are the coordinates and corresponding canonical momenta of a classical, many degree of freedom, dynamical system.

  2. Verify that
    1. $\displaystyle [u, v] = - [v, u].
$

    2. $\displaystyle [u, c] = 0.
$

    3. $\displaystyle [u_1+ u_2, v] = [u_1, v] + [u_2, v].
$

    4. $\displaystyle [u, v_1 + v_2]= [u, v_1] + [u, v_2].
$

    5. $\displaystyle [u_1\, u_2, v] = [u_1, v] \,u_2 + u_1\, [u_2, v].
$

    6. $\displaystyle [u, v_1 \,v_2] = [u, v_1] \,v_2 + v_1 \,[u, v_2].
$

    7. $\displaystyle [u, [v, w]]+ [v, [w, u]] + [w, [u, v]] = 0.
$

    Here, $ [\cdots,\cdots]$ represents either a classical or a quantum mechanical Poisson bracket. Moreover, $ u$ , $ u$ , $ w$ , et cetera, represent dynamical variables (i.e., in the classical case, functions of the coordinates and canonical momenta), and $ c$ represents a number.

  3. Let $ \xi$ be an operator whose eigenvalues $ \xi'$ can take a continuous range of values. Let the $ \vert\xi'\rangle$ be the corresponding eigenstates. Let $ f(\xi)$ be a function of $ \xi$ that can be expanded as a power series. Demonstrate that

    $\displaystyle [f(\xi),\,\xi] = 0,
$

    and

    $\displaystyle f(\xi)\,\vert\xi'\rangle = f(\xi')\,\vert\xi'\rangle,
$

    where $ f(\xi')$ is the same function of the eigenvalue $ \xi'$ that $ f(\xi)$ is of the operator $ \xi$ . Let $ g(\eta)$ be a function of the operator $ \eta$ that can be expanded as a power series, and let $ \xi$ and $ \eta$ commute. Demonstrate that

    $\displaystyle [f(\xi), g(\eta)] =0.
$

  4. Consider a Gaussian wavepacket whose corresponding wavefunction is

    $\displaystyle \psi(x') =\psi_0\,\exp\left[-\frac{(x'-x_0)^{\,2}}{4\,\sigma^{\,2}}\right],
$

    where $ \psi_0$ , $ x_0$ , and $ \sigma$ are real numbers. Demonstrate that
    1. $\displaystyle \langle x\rangle = x_0.$

    2. $\displaystyle \langle ({\mit\Delta x})^2\rangle = \sigma^{\,2}.$

    3. $\displaystyle \langle p_x\rangle = 0.$

    4. $\displaystyle \langle ({\mit\Delta} p_x)^2\rangle = \frac{\hbar^2}{4\,\sigma^{\,2}}.
$

    Here, $ x$ and $ p_x$ are a position operator and its conjugate momentum operator, respectively.

  5. Let $ D_x({\mit\Delta} x)$ and $ D_y({\mit\Delta} y)$ be operators that displace a quantum mechanical system the finite distances $ {\mit\Delta} x$ and $ {\mit\Delta}y$ along the $ x$ - and $ y$ -directions, respectively. Demonstrate that

    $\displaystyle D_x({\mit\Delta} x_2)\,D_x({\mit\Delta} x_1)= D_x({\mit\Delta} x_1)\,D_x({\mit\Delta} x_2)= D_x({\mit\Delta}x_2+
{\mit\Delta}x_1),
$

    and

    $\displaystyle D_x({\mit\Delta} x)\,D_y({\mit\Delta} y)= D_y({\mit\Delta} y)\,D_x({\mit\Delta} x).
$

    What are the physical significances of these results?

  6. Suppose that we displace a one-dimensional quantum mechanical system a finite distance $ a$ along the $ x$ -axis. The corresponding operator is

    $\displaystyle D_x(a) = \exp\left(\frac{-{\rm i}\,p_x\,a}{\hbar}\right),
$

    where $ p_x$ is the momentum conjugate to the position operator $ x$ . Demonstrate that

    $\displaystyle D_x(a)\,x\,D_x(a)^{\,\dag } = x - a.
$

    [Hint: Use the momentum representation, $ x = {\rm i}\,\hbar\,d/dp_x$ .] Similarly, demonstrate that

    $\displaystyle D_x(a)\,x^{\,m}\,D_x(a)^{\,\dag } = (x-a)^{\,m},
$

    where $ m$ is a non-negative integer. Hence, deduce that

    $\displaystyle D_x(a)\,V(x)\,D_x(a)^{\,\dag } = V(x-a),
$

    where $ V(x)$ is a function of $ x$ that can be expanded as a power series.

    Let $ k=p_x/\hbar$ , and let $ \vert k'\rangle$ denote an eigenket of the $ k$ operator belonging to the eigenvalue $ k'$ . Demonstrate that

    $\displaystyle \vert A\rangle = \sum_{n=-\infty,\infty}c_n\,\vert k'+n\,k_a\rangle,
$

    where the $ c_n$ are arbitrary complex coefficients, and $ k_a=2\pi/a$ , is an eigenket of the $ D_x(a)$ operator belonging to the eigenvalue $ \exp(-{\rm i}\,k'\,a)$ . Show that the corresponding wavefunction can be written

    $\displaystyle \psi_A(x') = {\rm e}^{\,{\rm i}\,k'\,x'}\,u(x'),
$

    where $ u(x'+a)=u(x')$ for all $ x'$ .


next up previous
Next: Quantum Dynamics Up: Position and Momentum Previous: Displacement Operators
Richard Fitzpatrick 2016-01-22