next up previous
Next: Magnetohydrodynamic Fluids Up: Wave Propagation Through Inhomogeneous Previous: Ionospheric Radio Wave Propagation

Exercises

  1. The electric polarization, $ {\bf P}$ , in a linear dielectric medium is related to the electric field-strength, $ {\bf E}$ , according to

    $\displaystyle {\bf P} =\epsilon_0\,(n^2-1)\,{\bf E},
$

    where $ n$ is the refractive index. Any divergence of the polarization field is associated with a bound charge density

    $\displaystyle \rho = -\nabla\cdot{\bf P},
$

    whereas any time variation generates a polarization current whose density is

    $\displaystyle {\bf j} = \frac{\partial{\bf P}}{\partial t}.
$

    Consider an electromagnetic wave propagating through a quasi-neutral, linear, dielectric medium. Assuming a common $ \exp(-{\rm i}\,\omega\,t)$ time variation of the wave fields, demonstrate from Maxwell's equations that

    $\displaystyle \nabla\times c\,{\bf B}$ $\displaystyle = -{\rm i}\,k_0\,n^2\,{\bf E},$    
    $\displaystyle \nabla\times {\bf E}$ $\displaystyle ={\rm i}\,k_0\,c\,{\bf B},$    

    where $ k_0=\omega/c$ .

  2. Consider an electromagnetic wave, polarized in the $ y$ -direction, that propagates in the $ z$ -direction through a medium of refractive index $ n(z)$ . Assuming that

    $\displaystyle {\bf E}$ $\displaystyle = E_y(z)\,\exp(-{\rm i}\,\omega\,t)\,{\bf e}_y,$    
    $\displaystyle {\bf B}$ $\displaystyle = B_x(z)\,\exp(-{\rm i}\,\omega\,t)\,{\bf e}_x,$    

    demonstrate that

    $\displaystyle \frac{d^2 E_y}{dz^2} + k_0^{\,2}\,n^2\,E_y$ $\displaystyle =0,$    
    $\displaystyle \frac{d\,(c\,B_x)}{dz}+{\rm i}\,k_0\,n^2\,E_y$ $\displaystyle =0,$    

    where $ k_0=\omega/c$ .

  3. Consider an electromagnetic wave, polarized in the $ y$ -direction, that propagates in the $ x$ -$ z$ plane through a medium of refractive index $ n(z)$ . Assuming that

    $\displaystyle {\bf E}$ $\displaystyle = E_y(z)\,{\rm e}^{\,{\rm i}\,(k_x\,x-\omega\,t)}\,{\bf e}_y,$    
    $\displaystyle {\bf B}$ $\displaystyle = B_x(z)\,{\rm e}^{\,{\rm i}\,(k_x\,x-\omega\,t)}\,{\bf e}_x + B_z(z)\,{\rm e}^{\,{\rm i}\,(k_x\,x-\omega\,t)}\,{\bf e}_z,$    

    demonstrate that

    $\displaystyle \frac{d^2 E_y}{dz^2} + k_0^{\,2}\,q^2\,E_y$ $\displaystyle =0,$    
    $\displaystyle \frac{d\,(c\,B_x)}{dz}+ {\rm i}\,k_0\,q^2\,E_y$ $\displaystyle =0,$    

    where

    $\displaystyle q^2 = n^2-S^{2},
$

    and $ S=k_x/k_0$ , and $ k_0=\omega/c$ .

    Show that the WKB solutions take the form

    $\displaystyle E_y(z)$ $\displaystyle \simeq q^{\,-1/2}\,\exp\left(\pm {\rm i}\,k_0\int_0^z q\,dz'\right),$    
    $\displaystyle c\,B_x(z)$ $\displaystyle \simeq \mp q^{\,1/2}\,\exp\left(\pm {\rm i}\,k_0\int_0^z q\,dz'\right),$    

    and that the criterion for these solutions to be valid is

    $\displaystyle \frac{1}{k_0^{\,2}}\left\vert\frac{3}{4}\left(\frac{1}{q^2}\,\frac{dq}{dz}\right)^2 - \frac{1}{2\,q^3}\,\frac{d^2q}{dz^2}\right\vert\ll 1.
$

  4. Consider an electromagnetic wave, polarized in the $ x$ -$ z$ -plane, that propagates in the $ x$ -$ z$ plane through a medium of refractive index $ n(z)$ . Assuming that

    $\displaystyle {\bf E}$ $\displaystyle = E_x(z)\,{\rm e}^{\,{\rm i}\,(k_x\,x-\omega\,t)}\,{\bf e}_x+E_z(z)\,{\rm e}^{\,{\rm i}\,(k_x\,x-\omega\,t)}\,{\bf e}_z,$    
    $\displaystyle {\bf B}$ $\displaystyle = B_y(z)\,{\rm e}^{\,{\rm i}\,(k_x\,x-\omega\,t)}\,{\bf e}_y,$    

    demonstrate that

    $\displaystyle \frac{dE_x}{dz} -{\rm i}\,k_0\,\frac{q^2}{n^2}\,c\,B_y$ $\displaystyle =0,$    
    $\displaystyle \frac{d^2(c\,B_y)}{dz^2}-\frac{1}{n^2}\,\frac{dn^2}{dz}\,\frac{d\,(c\,B_y)}{dz}+k_0^{\,2}\,q^2\,c\,B_y$ $\displaystyle =0,$    

    where

    $\displaystyle q^2 = n^2-S^{2},
$

    and $ S=k_x/k_0$ , and $ k_0=\omega/c$ .

    Show that the WKB solutions take the form

    $\displaystyle c\,B_y(z)$ $\displaystyle \simeq n\,q^{\,-1/2}\,\exp\left(\pm {\rm i}\,k_0\int_0^z q\,dz'\right),$    
    $\displaystyle E_x(z)$ $\displaystyle \simeq \pm n^{\,-1}\,q^{\,1/2}\,\exp\left(\pm {\rm i}\,k_0\int_0^z q\,dz'\right),$    

    and that the criterion for these solutions to be valid is

    $\displaystyle \frac{1}{k_0^{\,2}}\left\vert\frac{3}{4}\left(\frac{1}{q^2}\,\fra...
...2n}{dz^2}-2\,\left(\frac{1}{n}\,\frac{dn}{dz}\right)^2\right]\right\vert\ll 1.
$

  5. An electromagnetic wave pulse of frequency $ \omega$ is launched vertically from ground level, travels upward into the ionosphere, is reflected, and returns to ground level. If $ \tau(\omega)$ is the net travel time of the pulse then the so-called equivalent height of reflection is defined $ h(\omega)=c\,\tau(\omega)/2$ . It follows that $ h$ is the altitude of the reflection layer calculated on the assumption that the pulse always travels at the velocity of light in vacuum. Let $ {\mit\Pi}_e(z)$ be the ionospheric plasma frequency, where $ z$ measures altitude above the ground. Neglect collisions and the Earth's magnetic field.
    1. Demonstrate that

      $\displaystyle h(\omega) = \int_0^{z_0(\omega)}\frac{\omega}{\left[\omega^2- {\mit\Pi}_e^{\,2}(z)\right]^{\,1/2}}\,dz,
$

      where $ {\mit\Pi}_e(z_0)= \omega$ .
    2. Show that if $ z_0(\omega)$ is a monotonically increasing function of $ \omega$ then the previous integral can be inverted to give

      $\displaystyle z_0(\omega) = \frac{2}{\pi}\int_0^{\pi/2}h(\omega\,\sin\alpha)\,d\alpha,
$

      or, equivalently,

      $\displaystyle z({\mit\Pi}_e) = \frac{2}{\pi}\int_0^{\pi/2}h({\mit\Pi}_e\,\sin\alpha)\,d\alpha.
$

      (Hint: This is a form of Abel inversion. See Budden 1985.)

    3. Demonstrate that if

      $\displaystyle h(\omega)= h_0 + \delta\left(\frac{\omega}{{\mit\Pi}_0}\right)^p,
$

      where $ h_0$ , $ \delta$ , and $ {\mit\Pi}_0$ are positive constants, then $ {\mit\Pi}_e(z)=0$ for $ z<h_0$ , and

      $\displaystyle {\mit\Pi}_e(z) =\left[\frac{\pi\,{\mit\Gamma}(1+p)}{{\mit\Gamma}(...
.../2)}\right]^{1/p} \frac{{\mit\Pi}_0}{2}\left(\frac{z-h_0}{\delta}\right)^{1/p}
$

      for $ z\geq h_0$ . Here, $ {\mit\Gamma}(z)$ is a Gamma function (Abramowitz and Stegun 1965a).

  6. Suppose that the refractive index, $ n(z)$ , of the ionosphere is given by $ n^2=1-\alpha\,(z-h_0)$ for $ z\geq h_0$ , and $ n^2=1$ for $ z<h_0$ , where $ \alpha$ and $ h_0$ are positive constants, and the Earth's magnetic field and curvature are both neglected. Here, $ z$ measures altitude above the Earth's surface.
    1. A point transmitter sends up a wave packet at an angle $ \theta$ to the vertical. Show that the packet returns to Earth a distance

      $\displaystyle x_0 = 2\,h_0\,\tan\theta + \frac{2}{\alpha}\,\sin2\theta
$

      from the transmitter. Demonstrate that if $ \alpha\,h_0<1/4$ then for some values of $ x_0$ the previous equation is satisfied by three different values of $ \theta$ . In other words, wave packets can travel from the transmitter to the receiver via one of three different paths. Show that the critical case $ \alpha\,h_0=1/4$ corresponds to $ \theta=\pi/3$ and $ x_0=6\sqrt{3}\,h_0$ .
    2. A point radio transmitter emits a pulse of radio waves uniformly in all directions. Show that the pulse first returns to the Earth a distance $ 4\,h_0\,(2/\alpha\,h_0-1)^{1/2}$ from the transmitter, provided that $ \alpha\,h_0<2$ .


next up previous
Next: Magnetohydrodynamic Fluids Up: Wave Propagation Through Inhomogeneous Previous: Ionospheric Radio Wave Propagation
Richard Fitzpatrick 2016-01-23